
Holger Lange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4424198/publications.pdf Version: 2024-02-01

HOLCERLANCE

#	Article	IF	CITATIONS
1	Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging. IUCrJ, 2022, 9, 204-214.	2.2	9
2	Carrier localization in zero-dimensional and one-dimensional CdSe–CdS heterostructures. Journal of Chemical Physics, 2022, 156, 061102.	3.0	1
3	Full-Spectrum InP-Based Quantum Dots with Near-Unity Photoluminescence Quantum Efficiency. ACS Nano, 2022, 16, 9701-9712.	14.6	44
4	Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals. ACS Nano, 2021, 15, 5523-5533.	14.6	58
5	Size-Dependent Electron–Phonon Coupling in Monocrystalline Gold Nanoparticles. ACS Photonics, 2021, 8, 752-757.	6.6	23
6	3D diffractive imaging of nanoparticle ensembles using an x-ray laser. Optica, 2021, 8, 15.	9.3	48
7	Postdeposition Ligand Exchange Allows Tuning the Transport Properties of Large cale CuInSe 2 Quantum Dot Solids. Advanced Optical Materials, 2020, 8, 1901058.	7.3	14
8	Spectroscopic Effects of Lattice Strain in InP/ZnSe and InP/ZnS Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 22839-22844.	3.1	23
9	Deep strong light–matter coupling in plasmonic nanoparticle crystals. Nature, 2020, 583, 780-784.	27.8	144
10	Structural order in plasmonic superlattices. Nature Communications, 2020, 11, 3821.	12.8	56
11	Plasmonic Supercrystals with a Layered Structure Studied by a Combined TEMâ€SAXSâ€XCCA Approach. Advanced Materials Interfaces, 2020, 7, 2000919.	3.7	8
12	Experimental Evidence for Nonthermal Contributions to Plasmon-Enhanced Electrochemical Oxidation Reactions. ACS Catalysis, 2020, 10, 2345-2353.	11.2	35
13	Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles. Journal of Chemical Physics, 2020, 152, 064710.	3.0	9
14	Impact of substrate on tip-enhanced Raman spectroscopy: A comparison between field-distribution simulations and graphene measurements. Physical Review Research, 2020, 2, .	3.6	14
15	Strain in InP/ZnSe, S core/shell quantum dots from lattice mismatch and shell thickness—Material stiffness influence. Journal of Chemical Physics, 2019, 151, 154704.	3.0	22
16	Supercrystal Formation of Gold Nanorods by High Pressure Stimulation. Journal of Physical Chemistry C, 2019, 123, 29994-30000.	3.1	4
17	Kinetics of pressure-induced nanocrystal superlattice formation. Physical Chemistry Chemical Physics, 2019, 21, 21349-21354.	2.8	7
18	Direct optical excitation of dark plasmons for hot electron generation. Faraday Discussions, 2019, 214, 159-173.	3.2	15

HOLGER LANGE

#	Article	IF	CITATIONS
19	Phonon-Assisted Auger Process Enables Ultrafast Charge Transfer in CdSe Quantum Dot/Organic Molecule. Journal of Physical Chemistry C, 2019, 123, 17127-17135.	3.1	4
20	Resonant Energy Transfer can Trigger Multiexciton Recombination in Dense Quantum Dot Ensembles. Small, 2019, 15, 1803798.	10.0	7
21	Local orientational order in self-assembled nanoparticle films: the role of ligand composition and salt. Journal of Applied Crystallography, 2019, 52, 777-782.	4.5	5
22	Structure and Stability of PEG―and Mixed PEG‣ayerâ€Coated Nanoparticles at High Particle Concentrations Studied In Situ by Smallâ€Angle Xâ€Ray Scattering. Particle and Particle Systems Characterization, 2018, 35, 1700319.	2.3	17
23	Dark Interlayer Plasmons in Colloidal Gold Nanoparticle Bi- and Few-Layers. ACS Photonics, 2018, 5, 3962-3969.	6.6	28
24	Pressure-Stimulated Supercrystal Formation in Nanoparticle Suspensions. Journal of Physical Chemistry Letters, 2018, 9, 4720-4724.	4.6	14
25	Strain Engineering in InP/(Zn,Cd)Se Core/Shell Quantum Dots. Chemistry of Materials, 2018, 30, 4393-4400.	6.7	43
26	Heterogeneous local order in self-assembled nanoparticle films revealed by X-ray cross-correlations. IUCrJ, 2018, 5, 354-360.	2.2	14
27	Excitation-Dependence of Plasmon-Induced Hot Electrons in Gold Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 4925-4929.	4.6	70
28	Size-Dependent Phase Transfer Functionalization of Gold Nanoparticles To Promote Well-Ordered Self-Assembly. Langmuir, 2017, 33, 14437-14444.	3.5	31
29	Impact of the Crosslinker's Molecular Structure on the Aggregation of Gold Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2017, 231, 19-31.	2.8	6
30	Functional-Group-Dependent Formation of Bioactive Fluorescent-Plasmonic Nanohybrids. Journal of Physical Chemistry C, 2016, 120, 25732-25741.	3.1	3
31	Tuning the Interaction of Nanoparticles from Repulsive to Attractive by Pressure. Journal of Physical Chemistry C, 2016, 120, 19856-19861.	3.1	19
32	Ligand Layer Engineering To Control Stability and Interfacial Properties of Nanoparticles. Langmuir, 2016, 32, 7897-7907.	3.5	31
33	Metal–Semiconductor Nanoparticle Hybrids Formed by Self-Organization: A Platform to Address Exciton–Plasmon Coupling. Nano Letters, 2016, 16, 4811-4818.	9.1	37
34	Effective PEGylation of gold nanorods. Nanoscale, 2016, 8, 7296-7308.	5.6	50
35	Solidâ€State Chemistry on the Nanoscale: Ion Transport through Interstitial Sites or Vacancies?. Angewandte Chemie - International Edition, 2015, 54, 14183-14186.	13.8	37
36	Clustering of CdSe/CdS Quantum Dot/Quantum Rods into Micelles Can Form Bright, Non-blinking, Stable, and Biocompatible Probes. Langmuir, 2015, 31, 9441-9447.	3.5	18

HOLGER LANGE

#	Article	IF	CITATIONS
37	"Flash―Synthesis of CdSe/CdS Core–Shell Quantum Dots. Chemistry of Materials, 2014, 26, 1154-1160.	6.7	124
38	Homogeneously Alloyed CdSe1–xSx Quantum Dots (0 ≤ ≤): An Efficient Synthesis for Full Optical Tunability. Chemistry of Materials, 2013, 25, 2388-2390.	6.7	58
39	Radical Initiated Reactions on Biocompatible CdSe-Based Quantum Dots: Ligand Cross-Linking, Crystal Annealing, and Fluorescence Enhancement. Journal of Physical Chemistry C, 2013, 117, 8570-8578.	3.1	21
40	Tunable Plasmon Coupling in Distance-Controlled Gold Nanoparticles. Langmuir, 2012, 28, 8862-8866.	3.5	85
41	Interfacial Alloying in CdSe/CdS Heteronanocrystals: A Raman Spectroscopy Analysis. Chemistry of Materials, 2012, 24, 311-318.	6.7	146
42	Formation of gold nanoparticles in polymeric nanowires by low-temperature thermolysis of gold mesitylene. Journal of Materials Chemistry, 2012, 22, 684-690.	6.7	6
43	Adsorption Behavior of 4-Methoxypyridine on Gold Nanoparticles. Langmuir, 2011, 27, 7258-7264.	3.5	18
44	Raman spectroscopy of PbTe/CdTe nanocrystals. Physica Status Solidi (B): Basic Research, 2011, 248, 2748-2750.	1.5	10
45	Size-dependence of the anharmonicities in the vibrational potential of colloidal CdSe nanocrystals. Solid State Communications, 2011, 151, 67-70.	1.9	28
46	Optical phonons in colloidal CdSe nanorods. Physica Status Solidi (B): Basic Research, 2010, 247, 2488-2497.	1.5	21
47	Raman investigation of strain effects in CdSe nanorods. Physica Status Solidi (B): Basic Research, 2009, 246, 2817-2819.	1.5	9
48	Geometry dependence of the phonon modes in CdSe nanorods. Nanotechnology, 2009, 20, 045705.	2.6	53
49	Thin-walled Er3+:Y2O3 nanotubes showing up-converted fluorescence. Physical Chemistry Chemical Physics, 2009, 11, 3623.	2.8	9
50	Direct Observation of the Radial Breathing Mode in CdSe Nanorods. Nano Letters, 2008, 8, 4614-4617.	9.1	36
51	Experimental investigation of exciton-LO-phonon couplings in CdSe/ZnS core/shell nanorods. Physical Review B, 2008, 77, .	3.2	51
52	Effect of ZnS shell on the Raman spectra from CdSe nanorods. Physica Status Solidi - Rapid Research Letters, 2007, 1, 274-276.	2.4	25
53	Stimulated emission from ZnO nanorods. Physica Status Solidi (B): Basic Research, 2006, 243, 853-857.	1.5	47