List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4424191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Science China Life Sciences, 2022, 65, 362-375.	4.9	19
2	Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Science Translational Medicine, 2022, 14, eabf3917.	12.4	13
3	USP33 deubiquitinates and stabilizes HIFâ€⊋alpha to promote hypoxia response in glioma stem cells. EMBO Journal, 2022, 41, e109187.	7.8	21
4	Piwil1 Regulates Glioma Stem Cell Maintenance and Glioblastoma Progression. Cell Reports, 2021, 34, 108522.	6.4	32
5	Phage Display Targeting Identifies Eya1 as a Regulator of Glioblastoma Stem Cell Maintenance and Proliferation. Stem Cells, 2021, 39, 853-865.	3.2	9
6	Inhibiting DNA-PK induces glioma stem cell differentiation and sensitizes glioblastoma to radiation in mice. Science Translational Medicine, 2021, 13, .	12.4	37
7	Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. Journal of Experimental Medicine, 2021, 218, .	8.5	9
8	Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells. Nature Cancer, 2021, 2, 1136-1151.	13.2	41
9	Glioma stem-like cells evade interferon suppression through MBD3/NuRD complex–mediated STAT1 downregulation. Journal of Experimental Medicine, 2020, 217, .	8.5	30
10	Dual Role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nature Communications, 2020, 11, 3015.	12.8	111
11	Protein sumoylation with SUMO1 promoted by Pin1 in glioma stem cells augments glioblastoma malignancy. Neuro-Oncology, 2020, 22, 1809-1821.	1.2	18
12	Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nature Communications, 2020, 11, 900.	12.8	108
13	SATB2 drives glioblastoma growth by recruiting CBP to promote FOXM1 expression in glioma stem cells. EMBO Molecular Medicine, 2020, 12, e12291.	6.9	35
14	Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Science Translational Medicine, 2019, 11, .	12.4	112
15	Tissue-specific microRNA expression alters cancer susceptibility conferred by a TP53 noncoding variant. Nature Communications, 2019, 10, 5061.	12.8	18
16	Targeting Glioblastoma Stem Cells through Disruption of the Circadian Clock. Cancer Discovery, 2019, 9, 1556-1573.	9.4	172
17	Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma. Journal of Experimental Medicine, 2019, 216, 1071-1090.	8.5	89
18	Cancer Stem Cells: The Architects of the Tumor Ecosystem. Cell Stem Cell, 2019, 24, 41-53.	11.1	407

#	Article	IF	CITATIONS
19	Chromatin remodeler HELLS maintains glioma stem cells through E2F3 and MYC. JCI Insight, 2019, 4, .	5.0	30
20	Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. Cell Stem Cell, 2018, 22, 514-528.e5.	11.1	185
21	Hypoxic Induction of Vasorin Regulates Notch1 Turnover to Maintain Glioma Stem-like Cells. Cell Stem Cell, 2018, 22, 104-118.e6.	11.1	127
22	Epigenetically regulated miR-1247 functions as a novel tumour suppressor via MYCBP2 in methylator colon cancers. British Journal of Cancer, 2018, 119, 1267-1277.	6.4	20
23	N-methyladenine DNA Modification in Glioblastoma. Cell, 2018, 175, 1228-1243.e20.	28.9	236
24	Microvascular fractal dimension predicts prognosis and response to chemotherapy in glioblastoma: an automatic image analysis study. Laboratory Investigation, 2018, 98, 924-934.	3.7	23
25	lbrutinib inactivates BMX-STAT3 in glioma stem cells to impair malignant growth and radioresistance. Science Translational Medicine, 2018, 10, .	12.4	112
26	Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nature Communications, 2017, 8, 15080.	12.8	219
27	Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nature Neuroscience, 2017, 20, 661-673.	14.8	153
28	Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. Journal of Experimental Medicine, 2017, 214, 245-267.	8.5	123
29	Targeting Glioma Stem Cell-Derived Pericytes Disrupts the Blood-Tumor Barrier and Improves Chemotherapeutic Efficacy. Cell Stem Cell, 2017, 21, 591-603.e4.	11.1	168
30	Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nature Medicine, 2017, 23, 1352-1361.	30.7	279
31	MYC-Regulated Mevalonate Metabolism Maintains Brain Tumor–Initiating Cells. Cancer Research, 2017, 77, 4947-4960.	0.9	91
32	Tetraspanin CD9 stabilizes gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote STAT3 activation in glioma stem cells. Cell Death and Differentiation, 2017, 24, 167-180.	11.2	59
33	Direct contact with perivascular tumor cells enhances integrin $\hat{1}\pm v \hat{1}^2 3$ signaling and migration of endothelial cells. Oncotarget, 2016, 7, 43852-43867.	1.8	28
34	Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget, 2015, 6, 37300-37315.	1.8	41
35	Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nature Cell Biology, 2015, 17, 170-182.	10.3	716
36	Hyperthermia Sensitizes Glioma Stem-like Cells to Radiation by Inhibiting AKT Signaling. Cancer Research, 2015, 75, 1760-1769.	0.9	82

#	Article	IF	CITATIONS
37	The mitotic kinesin KIF11 is a driver of invasion, proliferation, and self-renewal in glioblastoma. Science Translational Medicine, 2015, 7, 304ra143.	12.4	130
38	Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell, 2015, 28, 441-455.	16.8	249
39	Lending an â€~ELPing hand to tumor initiation. Journal of Experimental Medicine, 2015, 212, 1989-1989.	8.5	0
40	CDC20 maintains tumor initiating cells. Oncotarget, 2015, 6, 13241-13254.	1.8	53
41	Lgr5 Marks Post-Mitotic, Lineage Restricted Cerebellar Granule Neurons during Postnatal Development. PLoS ONE, 2014, 9, e114433.	2.5	14
42	Sema3C Promotes the Survival and Tumorigenicity of Glioma Stem Cells through Rac1 Activation. Cell Reports, 2014, 9, 1812-1826.	6.4	99
43	Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages. Cancers, 2014, 6, 723-740.	3.7	29
44	Brain tumor stem cells: Molecular characteristics and their impact on therapy. Molecular Aspects of Medicine, 2014, 39, 82-101.	6.4	164
45	The Zinc Finger Transcription Factor ZFX Is Required for Maintaining the Tumorigenic Potential of Glioblastoma Stem Cells. Stem Cells, 2014, 32, 2033-2047.	3.2	47
46	The Lgr5 transgene is expressed specifically in glycinergic amacrine cells in the mouse retina. Experimental Eye Research, 2014, 119, 106-110.	2.6	19
47	High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor. Cell Reports, 2014, 6, 117-129.	6.4	76
48	Multiplex Flow Cytometry Barcoding and Antibody Arrays Identify Surface Antigen Profiles of Primary and Metastatic Colon Cancer Cell Lines. PLoS ONE, 2013, 8, e53015.	2.5	26
49	Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth. Cell, 2013, 153, 139-152.	28.9	729
50	Molecularly targeted therapy in neuro-oncology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 104, 255-278.	1.8	9
51	Laminin alpha 2 enables glioblastoma stem cell growth. Annals of Neurology, 2012, 72, 766-778.	5.3	151
52	The Quest for Self-Identity: Not All Cancer Stem Cells Are the Same. Clinical Cancer Research, 2012, 18, 3495-3498.	7.0	12
53	Ubiquitination and deubiquitination of REST and its roles in cancers. FEBS Letters, 2012, 586, 1602-1605.	2.8	40
54	Elevated invasive potential of glioblastoma stem cells. Biochemical and Biophysical Research Communications, 2011, 406, 643-648.	2.1	168

#	Article	IF	CITATIONS
55	Direct In Vivo Evidence for Tumor Propagation by Glioblastoma Cancer Stem Cells. PLoS ONE, 2011, 6, e24807.	2.5	125
56	Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nature Cell Biology, 2011, 13, 142-152.	10.3	139
57	L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO Journal, 2011, 30, 800-813.	7.8	146
58	Nonreceptor Tyrosine Kinase BMX Maintains Self-Renewal and Tumorigenic Potential of Glioblastoma Stem Cells by Activating STAT3. Cancer Cell, 2011, 19, 498-511.	16.8	233
59	Cancer stem cells in gliomas: Identifying and understanding the apex cell in cancer's hierarchy. Glia, 2011, 59, 1148-1154.	4.9	128
60	Role of deubiquitylase HAUSP in stem cell maintenance. Cell Cycle, 2011, 10, 1182-1183.	2.6	5
61	Notch Promotes Radioresistance of Glioma Stem Cells Â. Stem Cells, 2010, 28, 17-28.	3.2	505
62	Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein and Cell, 2010, 1, 638-655.	11.0	204
63	Potential therapeutic implications of cancer stem cells in glioblastoma. Biochemical Pharmacology, 2010, 80, 654-665.	4.4	179
64	Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth. PLoS Biology, 2010, 8, e1000319.	5.6	117
65	The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle, 2009, 8, 3274-3284.	2.6	708
66	Turning Cancer Stem Cells Inside Out: An Exploration of Glioma Stem Cell Signaling Pathways. Journal of Biological Chemistry, 2009, 284, 16705-16709.	3.4	87
67	Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513.	16.8	1,196
68	Targeting Interleukin 6 Signaling Suppresses Glioma Stem Cell Survival and Tumor Growth. Stem Cells, 2009, 27, 2393-2404.	3.2	300
69	Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition. Stem Cells, 2008, 26, 3027-3036.	3.2	207
70	Targeting Cancer Stem Cells through L1CAM Suppresses Glioma Growth. Cancer Research, 2008, 68, 6043-6048.	0.9	376
71	c-Myc Is Required for Maintenance of Glioma Cancer Stem Cells. PLoS ONE, 2008, 3, e3769.	2.5	352
72	Chemotherapy and Cancer Stem Cells. Cell Stem Cell, 2007, 1, 353-355.	11.1	128

#	Article	IF	CITATIONS
73	Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444, 756-760.	27.8	5,600
74	Stem Cell–like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor. Cancer Research, 2006, 66, 7843-7848.	0.9	1,239
75	ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature, 2001, 411, 969-974.	27.8	245