Brendan A Wintle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4423379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design considerations for rapid biodiversity reconnaissance surveys and longâ€ŧerm monitoring to assess the impact of wildfire. Diversity and Distributions, 2022, 28, 559-570.	1.9	9
2	A fractional land use change model for ecological applications. Environmental Modelling and Software, 2022, 147, 105258.	1.9	12
3	Integrating species metrics into biodiversity offsetting calculations to improve longâ€ŧerm persistence. Journal of Applied Ecology, 2022, 59, 1060-1071.	1.9	5
4	Getting our Act together to improve Indigenous leadership and recognition in biodiversity management. Ecological Management and Restoration, 2022, 23, 33-42.	0.7	13
5	Developing a twoâ€way learning monitoring program for <i>Mankarr</i> (Greater Bilby) in the Western Desert, Western Australia. Ecological Management and Restoration, 2022, 23, 129-138.	0.7	6
6	A gap analysis of reconnaissance surveys assessing the impact of the 2019–20 wildfires on vertebrates in Australia. Biological Conservation, 2022, 270, 109573.	1.9	2
7	Recognizing culturally significant species and Indigenousâ€led management is key to meeting international biodiversity obligations. Conservation Letters, 2022, 15, .	2.8	12
8	The minimum land area requiring conservation attention to safeguard biodiversity. Science, 2022, 376, 1094-1101.	6.0	85
9	Credible biodiversity offsetting needs public national registers to confirm no net loss. One Earth, 2022, 5, 650-662.	3.6	21
10	Too hot to hunt: Mechanistic predictions of thermal refuge from cat predation risk. Conservation Letters, 2022, 15, .	2.8	5
11	Combining financial costs and statistical power to optimize monitoring to detect recoveries of species after megafire. Global Ecology and Biogeography, 2022, 31, 2147-2157.	2.7	2
12	Using decision science to evaluate global biodiversity indices. Conservation Biology, 2021, 35, 492-501.	2.4	20
13	Including indigenous knowledge in species distribution modeling for increased ecological insights. Conservation Biology, 2021, 35, 587-597.	2.4	26
14	Quantifying the impact of vegetationâ€based metrics on species persistence when choosing offsets for habitat destruction. Conservation Biology, 2021, 35, 567-577.	2.4	15
15	A threatened species index for Australian birds. Conservation Science and Practice, 2021, 3, e322.	0.9	18
16	Impact Indicators for Biodiversity Conservation Research: Measuring Influence within and beyond Academia. BioScience, 2021, 71, 383-395.	2.2	8
17	Assessing biophysical and socio-economic impacts of climate change on regional avian biodiversity. Scientific Reports, 2021, 11, 3304.	1.6	9
18	Identifying uncertainties in scenarios and models of socio-ecological systems in support of decision-making. One Earth, 2021, 4, 967-985.	3.6	29

#	Article	IF	CITATIONS
19	Equilibrium Modeling for Environmental Science: Exploring the Nexus of Economic Systems and Environmental Change. Earth's Future, 2021, 9, e2020EF001923.	2.4	6
20	Cost-effectiveness of thermal imaging for monitoring a cryptic arboreal mammal. Wildlife Research, 2021, 48, 625-634.	0.7	4
21	What are we measuring? A review of metrics used to describe biodiversity in offsets exchanges. Biological Conservation, 2020, 241, 108250.	1.9	58
22	After the Megafires: What Next for Australian Wildlife?. Trends in Ecology and Evolution, 2020, 35, 753-757.	4.2	88
23	Factors influencing the residency of bettongs using oneâ€way gates to exit a fenced reserve. Austral Ecology, 2020, 45, 858-871.	0.7	2
24	Measuring impacts on species with models and metrics of varying ecological and computational complexity. Conservation Biology, 2020, 34, 1512-1524.	2.4	2
25	Predators, fire or resources: What drives the distribution of herbivores in fragmented mesic forests?. Austral Ecology, 2020, 45, 329-339.	0.7	3
26	A checklist of attributes for effective monitoring of threatened species and threatened ecosystems. Journal of Environmental Management, 2020, 262, 110312.	3.8	41
27	A stitch in time – Synergistic impacts to platypus metapopulation extinction risk. Biological Conservation, 2020, 242, 108399.	1.9	13
28	<scp>steps</scp> : Software for spatially and temporally explicit population simulations. Methods in Ecology and Evolution, 2020, 11, 596-603.	2.2	15
29	Forecasting species range dynamics with processâ€explicit models: matching methods to applications. Ecology Letters, 2019, 22, 1940-1956.	3.0	144
30	Corrigendum to: The threats to Australia's imperilled species and implications for a national conservation response. Pacific Conservation Biology, 2019, 25, 328.	0.5	19
31	Unexpectedly high densities of feral cats in a rugged temperate forest. Biological Conservation, 2019, 239, 108287.	1.9	14
32	Spending to save: What will it cost to halt Australia's extinction crisis?. Conservation Letters, 2019, 12, e12682.	2.8	69
33	Collaborative conservation planning: Quantifying the contribution of expert engagement to identify spatial conservation priorities. Conservation Letters, 2019, 12, e12673.	2.8	2
34	Identifying technology solutions to bring conservation into the innovation era. Frontiers in Ecology and the Environment, 2019, 17, 591-598.	1.9	13
35	A Call for International Leadership and Coordination to Realize the Potential of Conservation Technology. BioScience, 2019, 69, 823-832.	2.2	21
36	The effect of substrate compaction on plant water use and the implications for phytocap design specifications. Ecological Engineering, 2019, 127, 195-203.	1.6	6

#	Article	IF	CITATIONS
37	Systematic planning can rapidly close the protection gap in Australian mammal havens. Conservation Letters, 2019, 12, e12611.	2.8	12
38	Spatially explicit power analysis for detecting occupancy trends for multiple species. Ecological Applications, 2019, 29, e01950.	1.8	23
39	FoxNet: An individualâ€based model framework to support management of an invasive predator, the red fox. Journal of Applied Ecology, 2019, 56, 1460-1470.	1.9	15
40	Pathways to strategic communication for biodiversity conservation: Response to "Hearing ourselves (and acting in consequence): A commentary on Bekessy et al. from a bird-handling environmental education perspective― Biological Conservation, 2019, 233, 330-331.	1.9	1
41	Adaptive management informs conservation and monitoring of Australia's threatened malleefowl. Biological Conservation, 2019, 233, 31-40.	1.9	9
42	Metrics of progress in the understanding and management of threats to Australian birds. Conservation Biology, 2019, 33, 456-468.	2.4	31
43	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	1.9	19
44	Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 909-914.	3.3	312
45	The threats to Australia's imperilled species and implications for a national conservation response. Pacific Conservation Biology, 2019, 25, 231.	0.5	72
46	Scenarios and Models to Support Global Conservation Targets. Trends in Ecology and Evolution, 2019, 34, 57-68.	4.2	66
47	Australia's mammal fauna requires a strategic and enhanced network of predator-free havens. Nature Ecology and Evolution, 2018, 2, 410-411.	3.4	32
48	Model averaging in ecology: a review of Bayesian, informationâ€theoretic, and tactical approaches for predictive inference. Ecological Monographs, 2018, 88, 485-504.	2.4	209
49	Modelling species responses to extreme weather provides new insights into constraints on range and likely climate change impacts for Australian mammals. Ecography, 2018, 41, 308-320.	2.1	44
50	Monitoring, imperfect detection, and risk optimization of a Tasmanian devil insurance population. Conservation Biology, 2018, 32, 267-275.	2.4	11
51	Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildlife Research, 2018, 45, 627.	0.7	125
52	Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods. PLoS ONE, 2018, 13, e0203304.	1.1	24
53	Ask not what nature can do for you: A critique of ecosystem services as a communication strategy. Biological Conservation, 2018, 224, 71-74.	1.9	52
54	Minimizing species extinctions through strategic planning for conservation fencing. Conservation Biology, 2017, 31, 1029-1038.	2.4	17

#	Article	IF	CITATIONS
55	The scaling of population persistence with carrying capacity does not asymptote in populations of a fish experiencing extreme climate variability. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170826.	1.2	4
56	Species partitioning in a temperate mountain chain: Segregation by habitat vs. interspecific competition. Ecology and Evolution, 2017, 7, 2685-2696.	0.8	21
57	Integrated models to support multiobjective ecological restoration decisions. Conservation Biology, 2017, 31, 1418-1427.	2.4	11
58	Characterising uncertainty in generalised dissimilarity models. Methods in Ecology and Evolution, 2017, 8, 985-995.	2.2	17
59	Crossâ€validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 2017, 40, 913-929.	2.1	1,092
60	Modelling the spatial variation of vital rates: An evaluation of the strengths and weaknesses of correlative species distribution models. Diversity and Distributions, 2017, 23, 841-853.	1.9	12
61	Analysis of Tradeâ€Offs Between Biodiversity, Carbon Farming and Agricultural Development in Northern Australia Reveals the Benefits of Strategic Planning. Conservation Letters, 2017, 10, 94-104.	2.8	28
62	Dealing with Cumulative Biodiversity Impacts in Strategic Environmental Assessment: A New Frontier for Conservation Planning. Conservation Letters, 2017, 10, 195-204.	2.8	58
63	Extinct or still out there? Disentangling influences on extinction and rediscovery helps to clarify the fate of species on the edge. Global Change Biology, 2017, 23, 621-634.	4.2	23
64	Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods in Ecology and Evolution, 2017, 8, 1012-1021.	2.2	27
65	Evaluating 318 continentalâ€scale species distribution models over a 60â€year prediction horizon: what factors influence the reliability of predictions?. Global Ecology and Biogeography, 2017, 26, 371-384.	2.7	81
66	Improving the Design of a Conservation Reserve for a Critically Endangered Species. PLoS ONE, 2017, 12, e0169629.	1.1	31
67	Urban bat communities are affected by wetland size, quality, and pollution levels. Ecology and Evolution, 2016, 6, 4761-4774.	0.8	49
68	Costâ€effective conservation of an endangered frog under uncertainty. Conservation Biology, 2016, 30, 350-361.	2.4	18
69	Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Global Change Biology, 2016, 22, 2425-2439.	4.2	91
70	Taming a Wicked Problem: Resolving Controversies in Biodiversity Offsetting. BioScience, 2016, 66, 489-498.	2.2	171
71	Deep-sea diversity patterns are shaped by energy availability. Nature, 2016, 533, 393-396.	13.7	202
72	Climate and Fire Scenario Uncertainty Dominate the Evaluation of Options for Conserving the Great Desert Skink. Conservation Letters, 2016, 9, 181-190.	2.8	10

#	Article	IF	CITATIONS
73	Integrating modelling of biodiversity composition and ecosystem function. Oikos, 2016, 125, 10-19.	1.2	32
74	Functional responses of insectivorous bats to increasing housing density support †landâ€sparing' rather than †landâ€sharing' urban growth strategies. Journal of Applied Ecology, 2016, 53, 191-201.	1.9	48
75	Towards strategic offsetting of biodiversity loss using spatial prioritization concepts and tools: A case study on mining impacts in Australia. Biological Conservation, 2015, 192, 513-521.	1.9	63
76	Threatened species impact assessments: survey effort requirements based on criteria for cumulative impacts. Diversity and Distributions, 2015, 21, 620-630.	1.9	7
77	Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 2015, 24, 276-292.	2.7	661
78	A global synthesis of survival estimates for microbats. Biology Letters, 2015, 11, 20150371.	1.0	25
79	Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change. Global Change Biology, 2015, 21, 3005-3020.	4.2	27
80	Valid autoâ€models for spatially autocorrelated occupancy and abundance data. Methods in Ecology and Evolution, 2015, 6, 1137-1149.	2.2	56
81	Spatial conservation priorities are highly sensitive to choice of biodiversity surrogates and species distribution model type. Ecography, 2015, 38, 1101-1111.	2.1	37
82	Incorporating detectability of threatened species into environmental impact assessment. Conservation Biology, 2015, 29, 216-225.	2.4	34
83	Ignoring Imperfect Detection in Biological Surveys Is Dangerous: A Response to â€~Fitting and Interpreting Occupancy Models'. PLoS ONE, 2014, 9, e99571.	1.1	142
84	Using Strategic Foresight to Assess Conservation Opportunity. Conservation Biology, 2014, 28, 1474-1483.	2.4	24
85	Modelling the benefits of habitat restoration in socio-ecological systems. Biological Conservation, 2014, 169, 60-67.	1.9	33
86	Reptiles in restored agricultural landscapes: the value of linear strips, patches and habitat condition. Animal Conservation, 2014, 17, 544-554.	1.5	36
87	Integrating Biological and Social Values When Prioritizing Places for Biodiversity Conservation. Conservation Biology, 2014, 28, 992-1003.	2.4	96
88	Incorporating spatial autocorrelation into species distribution models alters forecasts of climateâ€mediated range shifts. Global Change Biology, 2014, 20, 2566-2579.	4.2	47
89	Minimizing the Cost of Keeping Options Open for Conservation in a Changing Climate. Conservation Biology, 2014, 28, 646-653.	2.4	16
90	Strategic foresight: how planning for the unpredictable can improve environmental decision-making. Trends in Ecology and Evolution, 2014, 29, 531-541.	4.2	118

#	Article	IF	CITATIONS
91	Continuous predictors of species distributions support categorically stronger inference than ordinal and nominal classes: an example with urban bats. Landscape Ecology, 2014, 29, 1237-1248.	1.9	8
92	Imperfect detection impacts the performance of species distribution models. Global Ecology and Biogeography, 2014, 23, 504-515.	2.7	215
93	Inferring extinctions from sighting records of variable reliability. Journal of Applied Ecology, 2014, 51, 251-258.	1.9	38
94	Impacts of climate change and urban development on the spotted marsh frog (<i>Limnodynastes) Tj ETQq0 0 0</i>	rgBT_Ove	erlogk 10 Tf 50
95	Incorporating Uncertainty of Management Costs in Sensitivity Analyses of Matrix Population Models. Conservation Biology, 2013, 27, 134-144.	2.4	10
96	Counting the books while the library burns: why conservation monitoring programs need a plan for action. Frontiers in Ecology and the Environment, 2013, 11, 549-555.	1.9	159
97	A general model of detectability using species traits. Methods in Ecology and Evolution, 2013, 4, 45-52.	2.2	63
98	Egg-laying and rainfall synchrony in an endangered bird species: Implications for conservation in a changing climate. Biological Conservation, 2013, 161, 1-9.	1.9	18
99	Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Global Ecology and Biogeography, 2013, 22, 806-817.	2.7	79
100	A Protocol for Better Design, Application, and Communication of Population Viability Analyses. Conservation Biology, 2013, 27, 644-656.	2.4	63
101	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	3.0	1,375
102	Choosing ecosystem service investments that are robust to uncertainty across multiple parameters. Ecological Applications, 2012, 22, 697-704.	1.8	4
103	A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography, 2012, 35, 879-888.	2.1	218
104	The use of dynamic landscape metapopulation models for forest management: a case study of the red-backed salamander. Canadian Journal of Forest Research, 2012, 42, 1091-1106.	0.8	5
105	Designing occupancy surveys and interpreting nonâ€detection when observations are imperfect. Diversity and Distributions, 2012, 18, 417-424.	1.9	67
106	Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Global Change Biology, 2012, 18, 1357-1371.	4.2	182
107	Transparent planning for biodiversity and development in the urban fringe. Landscape and Urban Planning, 2012, 108, 140-149.	3.4	52
108	Uncertain Sightings and the Extinction of the Ivoryâ€Billed Woodpecker. Conservation Biology, 2012, 26, 180-184.	2.4	38

#	Article	IF	CITATIONS
109	Ecological–economic optimization of biodiversity conservation under climate change. Nature Climate Change, 2011, 1, 355-359.	8.1	85
110	State-and-transition modelling for Adaptive Management of native woodlands. Biological Conservation, 2011, 144, 1224-1236.	1.9	81
111	Linking cost efficiency evaluation with population viability analysis to prioritize wetland bird conservation actions. Biological Conservation, 2011, 144, 2354-2361.	1.9	24
112	Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia. Austral Ecology, 2011, 36, 290-296.	0.7	65
113	Habitat area, quality and connectivity: striking the balance for efficient conservation. Journal of Applied Ecology, 2011, 48, 148-152.	1.9	241
114	Quantifying variance components in ecological models based on expert opinion. Journal of Applied Ecology, 2011, 48, 736-745.	1.9	23
115	Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Diversity and Distributions, 2011, 17, 1099-1110.	1.9	95
116	Reconciling Uncertain Costs and Benefits in Bayes Nets for Invasive Species Management. Risk Analysis, 2010, 30, 277-284.	1.5	26
117	Alien invaders and reptile traders: what drives the live animal trade in South Africa?. Animal Conservation, 2010, 13, 24-32.	1.5	47
118	How to Build an Efficient Conservation Fence. Conservation Biology, 2010, 24, 182-188.	2.4	40
119	Linking modelling, monitoring and management: an integrated approach to controlling overabundant wildlife. Journal of Applied Ecology, 2010, 47, 1169-1178.	1.9	34
120	Allocating monitoring effort in the face of unknown unknowns. Ecology Letters, 2010, 13, 1325-1337.	3.0	136
121	The biodiversity bank cannot be a lending bank. Conservation Letters, 2010, 3, 151-158.	2.8	128
122	Active adaptive conservation of threatened species in the face of uncertainty. Ecological Applications, 2010, 20, 1476-1489.	1.8	85
123	Conservation planning with dynamic threats: The role of spatial design and priority setting for species' persistence. Biological Conservation, 2010, 143, 756-767.	1.9	75
124	Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters, 2010, 3, 203-213.	2.8	376
125	"True" Conservation Progress. Science, 2009, 323, 43-44.	6.0	34
126	Climate change, connectivity and conservation decision making: back to basics. Journal of Applied Ecology, 2009, 46, 964-969.	1.9	360

#	Article	IF	CITATIONS
127	Comment on "Methods to account for spatial autocorrelation in the analysis of species distributional data: a review― Ecography, 2009, 32, 374-378.	2.1	57
128	Efficiently locating conservation boundaries: Searching for the Tasmanian devil facial tumour disease front. Biological Conservation, 2009, 142, 1333-1339.	1.9	10
129	Modelling human impacts on the Tasmanian wedge-tailed eagle (Aquila audax fleayi). Biological Conservation, 2009, 142, 2438-2448.	1.9	28
130	Dynamic Landscape Metapopulation Models and Sustainable Forest Management. , 2009, , 473-499.		3
131	The Sensitivity of Population Viability Analysis to Uncertainty about Habitat Requirements: Implications for the Management of the Endangered Southern Brown Bandicoot. Conservation Biology, 2008, 22, 1045-1054.	2.4	25
132	Using Carbon Investment to Grow the Biodiversity Bank. Conservation Biology, 2008, 22, 510-513.	2.4	97
133	Some practical suggestions for improving engagement between researchers and policyâ€makers in natural resource management. Ecological Management and Restoration, 2008, 9, 182-186.	0.7	134
134	When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology, 2008, 33, 986-998.	0.7	131
135	Adaptive risk management for certifiably sustainable forestry. Forest Ecology and Management, 2008, 256, 1311-1319.	1.4	42
136	When to stop managing or surveying cryptic threatened species. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13936-13940.	3.3	161
137	Towards Adaptive Management of Native Vegetation in Regional Landscapes. , 2008, , 159-182.		16
138	INCORPORATING LANDSCAPE STOCHASTICITY INTO POPULATION VIABILITY ANALYSIS. , 2007, 17, 317-322.		12
139	Use of confidence intervals to demonstrate performance against forest management standards. Forest Ecology and Management, 2007, 247, 237-245.	1.4	22
140	Future forests and indicator-species population models. Forestry Chronicle, 2007, 83, 36-40.	0.5	10
141	An info-gap approach to power and sample size calculations. Environmetrics, 2007, 18, 189-203.	0.6	15
142	The Boundary-Quality Penalty: a Quantitative Method for Approximating Species Responses to Fragmentation in Reserve Selection. Conservation Biology, 2007, 21, 355-364.	2.4	76
143	Uncertainty analysis favours selection of spatially aggregated reserve networks. Biological Conservation, 2006, 129, 427-434.	1.9	91
144	Uncertainty Analysis for Regional-Scale Reserve Selection. Conservation Biology, 2006, 20, 1688-1697.	2.4	78

#	Article	IF	CITATIONS
145	Planning for robust reserve networks using uncertainty analysis. Ecological Modelling, 2006, 199, 115-124.	1.2	95
146	MODELING SPECIES–HABITAT RELATIONSHIPS WITH SPATIALLY AUTOCORRELATED OBSERVATION DATA. , 2006, 16, 1945-1958.		93
147	Utility of Dynamic-Landscape Metapopulation Models for Sustainable Forest Management. Conservation Biology, 2005, 19, 1930-1943.	2.4	83
148	Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecology Letters, 2005, 8, 1235-1246.	3.0	712
149	Fauna habitat modelling and mapping: A review and case study in the Lower Hunter Central Coast region of NSW. Austral Ecology, 2005, 30, 719-738.	0.7	248
150	ESTIMATING AND DEALING WITH DETECTABILITY IN OCCUPANCY SURVEYS FOR FOREST OWLS AND ARBOREAL MARSUPIALS. Journal of Wildlife Management, 2005, 69, 905-917.	0.7	155
151	Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1885-1891.	1.2	465
152	PRECISION AND BIAS OF METHODS FOR ESTIMATING POINT SURVEY DETECTION PROBABILITIES. , 2004, 14, 703-712.		129
153	The Use of Bayesian Model Averaging to Better Represent Uncertainty in Ecological Models. Conservation Biology, 2003, 17, 1579-1590.	2.4	224