
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4423018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular Consequences of Copper Complexes Used To Catalyze Bioorthogonal Click Reactions. Journal of the American Chemical Society, 2011, 133, 17993-18001.	13.7	330
2	Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nature Chemical Biology, 2011, 7, 137-145.	8.0	207
3	Three-Mode Electrochemical Sensing of Ultralow MicroRNA Levels. Journal of the American Chemical Society, 2013, 135, 3027-3038.	13.7	207
4	Bioorthogonal chemistry. Nature Reviews Methods Primers, 2021, 1, .	21.2	201
5	Gene expression during the priming phase of liver regeneration after partial hepatectomy in mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11181-11186.	7.1	183
6	Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator. Optics Express, 2009, 17, 2984.	3.4	182
7	Mammalian Cell Surface Imaging with Nitrile-Functionalized Nanoprobes:  Biophysical Characterization of Aggregation and Polarization Anisotropy in SERS Imaging. Journal of the American Chemical Society, 2007, 129, 14-15.	13.7	128
8	Hepatitis C virus induced up-regulation of microRNA-27: A novel mechanism for hepatic steatosis. Hepatology, 2014, 59, 98-108.	7.3	110
9	Nitrones as dipoles for rapid strain-promoted 1,3-dipolar cycloadditions with cyclooctynes. Chemical Communications, 2010, 46, 931-933.	4.1	107
10	Imaging nanometer domains of β-adrenergic receptor complexes on the surface of cardiac myocytes. Nature Chemical Biology, 2005, 1, 196-202.	8.0	103
11	Peroxisome Proliferator-Activated Receptor α Antagonism Inhibits Hepatitis C Virus Replication. Chemistry and Biology, 2006, 13, 23-30.	6.0	94
12	All-fiber CARS microscopy of live cells. Optics Express, 2009, 17, 20700.	3.4	79
13	Quantitative Analysis of MicroRNA in Blood Serum with Protein-Facilitated Affinity Capillary Electrophoresis. Analytical Chemistry, 2011, 83, 6196-6201.	6.5	78
14	MicroRNAs regulate the immunometabolic response to viral infection in the liver. Nature Chemical Biology, 2015, 11, 988-993.	8.0	76
15	Near-Field Scanning Fluorescence Microscopy Study of Ion Channel Clusters in Cardiac Myocyte Membranes. Biophysical Journal, 2004, 87, 3525-3535.	0.5	72
16	Development of nanoparticle probes for multiplex SERS imaging of cell surface proteins. Nanoscale, 2010, 2, 1413.	5.6	72
17	The influence of cholesterol and lipid metabolism on host cell structure and hepatitis C virus replication. Biochemistry and Cell Biology, 2006, 84, 67-79.	2.0	71
18	Modulation of Fatty Acid Synthase Enzyme Activity and Expression during Hepatitis C Virus Replication. Chemistry and Biology, 2013, 20, 570-582.	6.0	71

#	Article	IF	CITATIONS
19	Cellular Lipid Metabolism Is Influenced by the Coordination Environment of Copper. Journal of the American Chemical Society, 2009, 131, 2444-2445.	13.7	67
20	Strain-promoted cycloadditions involving nitrones and alkynes—rapid tunable reactions for bioorthogonal labeling. Current Opinion in Chemical Biology, 2014, 21, 81-88.	6.1	67
21	Strain-promoted cycloadditions of cyclic nitrones with cyclooctynes for labeling human cancer cells. Chemical Communications, 2011, 47, 10040.	4.1	64
22	Intracellular Imaging of HCV RNA and Cellular Lipids by Using Simultaneous Two-Photon Fluorescence and Coherent Anti-Stokes Raman Scattering Microscopies. ChemBioChem, 2006, 7, 1895-1897.	2.6	60
23	MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19. Drugs, 2021, 81, 517-531.	10.9	59
24	Bioorthogonal Reactions Utilizing Nitrones as Versatile Dipoles in Cycloaddition Reactions. Chemical Reviews, 2021, 121, 6699-6717.	47.7	59
25	Direct imaging of the disruption of hepatitis C virus replication complexes by inhibitors of lipid metabolism. Virology, 2009, 394, 130-142.	2.4	57
26	Activity-based Protein Profiling Identifies a Host Enzyme, Carboxylesterase 1, Which Is Differentially Active during Hepatitis C Virus Replication. Journal of Biological Chemistry, 2010, 285, 25602-25612.	3.4	56
27	Competing roles of microRNA-122 recognition elements in hepatitis C virus RNA. Virology, 2011, 410, 336-344.	2.4	56
28	Stearoyl-CoA desaturase inhibition blocks formation of hepatitis C virus-induced specialized membranes. Scientific Reports, 2014, 4, 4549.	3.3	53
29	Nanoscale Aggregation of Cellular β2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles. ACS Nano, 2009, 3, 2329-2339.	14.6	49
30	Dynamics of lipid droplets induced by the hepatitis C virus core protein. Biochemical and Biophysical Research Communications, 2010, 399, 518-524.	2.1	48
31	Studies of multicomponent Kinugasa reactions in aqueous media. Tetrahedron Letters, 2009, 50, 1893-1896.	1.4	46
32	An enzyme-linked assay for the rapid quantification of microRNAs based on the viral suppressor of RNA silencing protein p19. Analytical Biochemistry, 2011, 412, 165-172.	2.4	46
33	Hepatitis C virus and microRNAs: miRed in a host of possibilities. Current Opinion in Virology, 2014, 7, 1-10.	5.4	46
34	Kinetics studies of rapid strain-promoted [3 + 2]-cycloadditions of nitrones with biaryl-aza-cyclooctynone. Organic and Biomolecular Chemistry, 2012, 10, 3066.	2.8	42
35	Laser Flash and Dual Wavelength Photolysis of 3,4-Diaza-2,2-dimethoxy-1-oxa[4.5]spirooct-3-ene. Migration of Hydrogen and Carbon in Cyclobutylidene and in the Excited State of Its Precursor. Journal of the American Chemical Society, 1997, 119, 3191-3192.	13.7	40
36	Lifetimes of Dialkylcarbocations Derived from Alkanediazonium Ions in Solution:Â Cyclohexadienyl Cations as Kinetic Probes for Cation Reactivity1. Journal of the American Chemical Society, 1999, 121, 6589-6598.	13.7	40

#	Article	IF	CITATIONS
37	Surface-Enhanced Raman and Resonant Rayleigh Scatterings From Adsorbate Saturated Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 7356-7363.	3.1	40
38	Laser Flash Photolysis Studies of Oxygen and Sulfur Atom Transfer Reactions from Oxiranes and Thiiranes to Singlet Carbenes1. Journal of the American Chemical Society, 1998, 120, 8681-8691.	13.7	37
39	Release of Nitric Oxide fromS-Nitrosohemoglobin. Electron Transfer as a Response to Deoxygenation. Journal of the American Chemical Society, 2001, 123, 4615-4616.	13.7	36
40	Activity-based protein profiling of the hepatitis C virus replication in Huh-7 hepatoma cells using a non-directed active site probe. Proteome Science, 2010, 8, 5.	1.7	36
41	Diverting Thiamin from Catalysis to Destruction. Mechanism of Fragmentation of N(1')-Methyl-2-(1-hydroxybenzyl)thiamin. Journal of the American Chemical Society, 1995, 117, 11383-11389.	13.7	34
42	Development of a Multiplexed Microfluidic Proteomic Reactor and Its Application for Studying Protein–Protein Interactions. Analytical Chemistry, 2011, 83, 4095-4102.	6.5	34
43	Fluorescence Lifetime Imaging of Alterations to Cellular Metabolism by Domain 2 of the Hepatitis C Virus Core Protein. PLoS ONE, 2013, 8, e66738.	2.5	32
44	Transcriptional profiling of the effects of 25-hydroxycholesterol on human hepatocyte metabolism and the antiviral state it conveys against the hepatitis C virus. BMC Chemical Biology, 2009, 9, 2.	1.6	31
45	Activity-Based Proteome Profiling of Hepatoma Cells during Hepatitis C Virus Replication Using Protease Substrate Probes. Journal of Proteome Research, 2010, 9, 912-923.	3.7	31
46	Bioorthogonal labelling of living bacteria using unnatural amino acids containing nitrones and a nitrone derivative of vancomycin. Chemical Communications, 2015, 51, 12501-12504.	4.1	31
47	Host–virus interactions during hepatitis C virus infection: a complex and dynamic molecular biosystem. Molecular BioSystems, 2010, 6, 1131.	2.9	29
48	Rate Constants for 1,2-Hydrogen Migration in Cyclohexylidene and in Substituted Cyclohexylidenes1. Journal of Organic Chemistry, 1999, 64, 4456-4464.	3.2	28
49	Genomic Effects of Polyamide/DNA Interactions on mRNA Expression. Chemistry and Biology, 2002, 9, 821-827.	6.0	28
50	Studying the RNA silencing pathway with the p19 protein. FEBS Letters, 2013, 587, 1198-1205.	2.8	28
51	Kinetics studies of rapid strain-promoted [3+2] cycloadditions of nitrones with bicyclo[6.1.0]nonyne. Canadian Journal of Chemistry, 2014, 92, 337-340.	1.1	28
52	Activity-based protein profiling of host–virus interactions. Trends in Biotechnology, 2012, 30, 89-99.	9.3	27
53	A Small-Molecule Probe for Hepatitis C Virus Replication that Blocks Protein Folding. Chemistry and Biology, 2006, 13, 1051-1060.	6.0	25
54	Strain-promoted 1,3-dipolar cycloadditions of diazo compounds with cyclooctynes. Canadian Journal of Chemistry, 2011, 89, 148-151.	1.1	25

#	Article	IF	CITATIONS
55	A New Chemical Probe for Phosphatidylinositol Kinase Activity. ChemBioChem, 2014, 15, 1253-1256.	2.6	25
56	Enhanced Specificity of the Viral Suppressor of RNA Silencing Protein p19 toward Sequestering of Human MicroRNA-122. Biochemistry, 2011, 50, 7745-7755.	2.5	24
57	Rearrangements and addition reactions of biarylazacyclooctynones and the implications to copper-free click chemistry. Organic and Biomolecular Chemistry, 2013, 11, 3436.	2.8	24
58	Kinugasa Reactions in Water: From Green Chemistry to Bioorthogonal Labelling. Molecules, 2015, 20, 6959-6969.	3.8	24
59	MicroRNA-124 Regulates Fatty Acid and Triglyceride Homeostasis. IScience, 2018, 10, 149-157.	4.1	24
60	Effects of pH and salt concentration on the siRNA binding activity of the RNA silencing suppressor protein p19. FEBS Letters, 2007, 581, 3051-3056.	2.8	23
61	Studies of the Interaction of the Viral Suppressor of RNA Silencing Protein p19 with Small RNAs Using Fluorescence Polarization. Biochemistry, 2008, 47, 8130-8138.	2.5	21
62	Copper-catalysed cycloaddition reactions of nitrones and alkynes for bioorthogonal labelling of living cells. RSC Advances, 2014, 4, 46966-46969.	3.6	21
63	The role of microRNAs in metabolic interactions between viruses and their hosts. Current Opinion in Virology, 2016, 19, 71-76.	5.4	20
64	A conserved miRNA-183 cluster regulates the innate antiviral response. Journal of Biological Chemistry, 2019, 294, 19785-19794.	3.4	20
65	Inhibition of siRNA Binding to a p19 Viral Suppressor of RNA Silencing by Cysteine Alkylation. Angewandte Chemie - International Edition, 2007, 46, 2005-2009.	13.8	19
66	Systems biology methods help develop a better understanding of hepatitis C virus-induced liver injury. Hepatology, 2012, 56, 1-4.	7.3	19
67	Bidirectional Lipid Droplet Velocities Are Controlled by Differential Binding Strengths of HCV Core DII Protein. PLoS ONE, 2013, 8, e78065.	2.5	19
68	Δ3-1,3,4-Oxadiazolines:  Photochemical Precursors to Diazoalkanes and sec-Alkanediazonium Ions in Acidic Solution1. Journal of the American Chemical Society, 1997, 119, 1789-1790.	13.7	18
69	The Efficacy of siRNAs against Hepatitis C Virus Is Strongly Influenced by Structure and Target Site Accessibility. Chemistry and Biology, 2010, 17, 515-527.	6.0	18
70	Simultaneous quantitative measurement of luciferase reporter activity and cell number in two- and three-dimensional cultures of hepatitis C virus replicons. Analytical Biochemistry, 2006, 350, 239-248.	2.4	17
71	Silicon Migration from Oxygen to Carbon and Decarbonylation in Methoxytriphenylsiloxycarbene. Organic Letters, 2000, 2, 2733-2736.	4.6	16
72	FLEth RNA Intercalating Probe Is a Convenient Reporter for Small Interfering RNAs. Journal of the American Chemical Society, 2009, 131, 9872-9873.	13.7	16

#	Article	IF	CITATIONS
73	Nanoscale organization of β2-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells. Biochemical and Biophysical Research Communications, 2009, 382, 85-90.	2.1	16
74	Laser flash photolysis of 2-adamantane-2,31-[3H]-diazirine: a reinvestigation. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 116, 1-7.	3.9	15
75	Reactions of Dimethoxycarbene with Cyclic Perchlorinated Olefins and Ketones. Journal of Organic Chemistry, 1999, 64, 4344-4352.	3.2	15
76	Normal acid/base behaviour in proton transfer reactions to alkoxy substituted carbenes: estimates for intrinsic barriers to reaction and p <i>K</i> _a values. Canadian Journal of Chemistry, 1999, 77, 1230-1240.	1.1	14
77	Stabilized recombinant suppressors of RNA silencing: Functional effects of linking monomers of Carnation Italian Ringspot virus p19. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1528-1535.	2.3	14
78	Gene Expression Profiling of Endoplasmic Reticulum Stress in Hepatitis C Virus-Containing Cells Treated with an Inhibitor of Protein Disulfide Isomerases. ACS Omega, 2018, 3, 17227-17235.	3.5	14
79	Synthesis and characterization of CN-modified protein analogues as potential vibrational contrast agents. Bioorganic Chemistry, 2007, 35, 284-293.	4.1	13
80	Evaluation of chemical labeling strategies for monitoring HCV RNA using vibrational microscopy. Organic and Biomolecular Chemistry, 2007, 5, 2380.	2.8	12
81	Synthesis and bioorthogonal coupling chemistry of a novel cyclopentenone-containing unnatural tyrosine analogue. Bioorganic Chemistry, 2008, 36, 105-111.	4.1	12
82	Hydrophobic Triarylâ€Substituted βâ€Lactams as Activityâ€Based Probes for Profiling Eukaryotic Enzymes and Host–Pathogen Interactions. ChemBioChem, 2014, 15, 2195-2200.	2.6	12
83	Soraphen A: A Probe for Investigating the Role of de Novo Lipogenesis during Viral Infection. ACS Infectious Diseases, 2015, 1, 130-134.	3.8	12
84	Armand-Frappier Outstanding Student Award — The emerging role of 25-hydroxycholesterol in innate immunity. Canadian Journal of Microbiology, 2015, 61, 521-530.	1.7	12
85	A Novel p19 Fusion Protein as a Delivery Agent for Short-interfering RNAs. Molecular Therapy - Nucleic Acids, 2016, 5, e303.	5.1	12
86	Activity-Based Phosphatidylinositol Kinase Probes Detect Changes to Protein–Protein Interactions During Hepatitis C Virus Replication. ACS Infectious Diseases, 2018, 4, 752-757.	3.8	12
87	Studies of a viral suppressor of RNA silencing p19-CFP fusion protein: A FRET-based probe for sensing double-stranded fluorophore tagged small RNAs. Biophysical Chemistry, 2009, 143, 166-169.	2.8	11
88	Chemistry and Kinetics of Dipropylcarbene in Solution. Journal of Physical Chemistry A, 1999, 103, 5336-5342.	2.5	10
89	Rapid Screening and Identification of Living Pathogenic Organisms via Optimized Bioorthogonal Non-canonical Amino Acid Tagging. Cell Chemical Biology, 2017, 24, 1048-1055.e3.	5.2	10
90	Chemical Methods for Probing Virus–Host Proteomic Interactions. ACS Infectious Diseases, 2016, 2, 773-786.	3.8	9

#	Article	IF	CITATIONS
91	ABPP and Host–Virus Interactions. Current Topics in Microbiology and Immunology, 2018, 420, 131-154.	1.1	9
92	Small Molecule Inhibition of Protein Disulfide Isomerase in Neuroblastoma Cells Induces an Oxidative Stress Response and Apoptosis Pathways. ACS Chemical Neuroscience, 2019, 10, 4068-4075.	3.5	9
93	Cycloadditions of Trans yclooctenes and Nitrones as Tools for Bioorthogonal Labelling. ChemBioChem, 2020, 21, 948-951.	2.6	9
94	Profiling of MicroRNA Targets Using Activity-Based Protein Profiling: Linking Enzyme Activity to MicroRNA-185 Function. Cell Chemical Biology, 2021, 28, 202-212.e6.	5.2	9
95	Bleomycin is a Potent Small-Molecule Inhibitor of Hepatitis C Virus Replication. ChemBioChem, 2006, 7, 1330-1333.	2.6	7
96	Profiling Kinase Activity during Hepatitis C Virus Replication Using a Wortmannin Probe. ACS Infectious Diseases, 2015, 1, 443-452.	3.8	7
97	Visualization of the Delivery and Release of Small RNAs Using Genetic Code Expansion and Unnatural RNA-Binding Proteins. Bioconjugate Chemistry, 2018, 29, 3982-3986.	3.6	7
98	Fungal natural alkaloid schizocommunin activates the aryl hydrocarbon receptor pathway. MedChemComm, 2019, 10, 985-990.	3.4	7
99	miR-383 Regulates Hepatic Lipid Homeostasis and Response to Dengue Virus Infection. ACS Infectious Diseases, 2022, 8, 928-941.	3.8	7
100	Fine-tuning acetyl-CoA carboxylase 1 activity through localization: functional genomics reveals a role for the lysine acetyltransferase NuA4 and sphingolipid metabolism in regulating Acc1 activity and localization. Genetics, 2022, 221, .	2.9	7
101	S-Nitrosylation of Cross-Linked Hemoglobins at β-Cysteine-93: Stabilized Hemoglobins as Nitric Oxide Sources. Journal of the American Chemical Society, 2000, 122, 10734-10735.	13.7	6
102	Rates of release of nitric oxide from HbSNO and internal electron transfer. Bioorganic Chemistry, 2003, 31, 3-10.	4.1	6
103	Activityâ€based profiling of the proteasome pathway during hepatitis C virus infection. Proteomics, 2015, 15, 3815-3825.	2.2	6
104	Structural insights into interactions between viral suppressor of <scp>RNA</scp> silencing protein p19 mutants and small <scp>RNA</scp> s. FEBS Open Bio, 2019, 9, 1042-1051.	2.3	6
105	Optimized aqueous Kinugasa reactions for bioorthogonal chemistry applications. Chemical Communications, 2020, 56, 1988-1991.	4.1	6
106	microRNA-27b regulates hepatic lipase enzyme LIPC and reduces triglyceride degradation during hepatitis C virus infection. Journal of Biological Chemistry, 2022, 298, 101983.	3.4	6
107	Predicting reactivity for bioorthogonal cycloadditions involving nitrones. RSC Advances, 2020, 10, 29306-29310.	3.6	5
108	A Bifunctional Nucleoside Probe for the Inhibition of the Human Immunodeficiency Virus-Type 1 Reverse Transcriptase. Bioconjugate Chemistry, 2020, 31, 1537-1544.	3.6	5

JOHN PAUL PEZACKI

#	Article	IF	CITATIONS
109	Silicon and silicon oxide surface modification using thiamine-catalyzed benzoin condensations. Canadian Journal of Chemistry, 2012, 90, 262-270.	1.1	4
110	Site-Specific Cross-Linking of a p19 Viral Suppressor of RNA Silencing Protein and Its RNA Targets Using an Expanded Genetic Code. Biochemistry, 2019, 58, 3520-3526.	2.5	4
111	Phenanthridine-based nitrones as substrates for strain-promoted alkyne-nitrone cycloadditions. Canadian Journal of Chemistry, 2019, 97, 1-6.	1.1	4
112	Picoliter Wells from Selective Growth of HEK293 Cells on Chemically Modified PDMS Surfaces. Journal of Biomaterials Applications, 2007, 21, 235-249.	2.4	3
113	6-Hydroxydopamine Inhibits the Hepatitis C Virus through Alkylation of Host and Viral Proteins and the Induction of Oxidative Stress. ACS Infectious Diseases, 2016, 2, 863-871.	3.8	3
114	Reactivity of <i>N</i> -acyl hydrazone probes with the mammalian proteome. RSC Medicinal Chemistry, 2021, 12, 797-803.	3.9	3
115	Intramolecular cyclization and subsequent rearrangements of alkyne-tethered N-heterocyclic carbenes. Tetrahedron Letters, 2012, 53, 5663-5666.	1.4	2
116	An affinity-based probe for methyltransferase enzymes based on sinefungin. Canadian Journal of Chemistry, 2017, 95, 1059-1063.	1.1	2
117	Hepatitis C Virus Helicase Binding Activity Monitored through Site-Specific Labeling Using an Expanded Genetic Code. ACS Infectious Diseases, 2019, 5, 2118-2126.	3.8	2
118	Taking Aim at Host–Pathogen Interactions. ACS Infectious Diseases, 2016, 2, 744-745.	3.8	1
119	Knock Out of Cell Death Pathway Components Results in Differential Caspase Expression in Response to HCV Infection. Proceedings (mdpi), 2020, 50, .	0.2	0
120	Reply to Zhang and Zhu "MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19― Drugs, 2021, 81, 1693-1695.	10.9	0