
Cheryl Lyn Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4422758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nature Reviews Nephrology, 2021, 17, 245-261.	9.6	278
2	SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nature Genetics, 2019, 51, 844-856.	21.4	207
3	Dual Chromatin and Cytoskeletal Remodeling by SETD2. Cell, 2016, 166, 950-962.	28.9	204
4	Endocrine-disrupting chemicals and fatty liver disease. Nature Reviews Endocrinology, 2017, 13, 445-457.	9.6	172
5	The NIEHS TaRGET II Consortium and environmental epigenomics. Nature Biotechnology, 2018, 36, 225-227.	17.5	79
6	Redox Regulation of Homeostasis and Proteostasis in Peroxisomes. Physiological Reviews, 2018, 98, 89-115.	28.8	79
7	Comprehensive Molecular Characterization Identifies Distinct Genomic and Immune Hallmarks of Renal Medullary Carcinoma. Cancer Cell, 2020, 37, 720-734.e13.	16.8	74
8	Reprogramming of the Epigenome by MLL1 Links Early-Life Environmental Exposures to Prostate Cancer Risk. Molecular Endocrinology, 2016, 30, 856-871.	3.7	68
9	Minireview: Epigenomic Plasticity and Vulnerability to EDC Exposures. Molecular Endocrinology, 2016, 30, 848-855.	3.7	67
10	Roadmap for investigating epigenome deregulation and environmental origins of cancer. International Journal of Cancer, 2018, 142, 874-882.	5.1	64
11	p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell, 2019, 35, 204-220.e9.	16.8	62
12	Updated Recommendations on the Diagnosis, Management, and Clinical Trial Eligibility Criteria for Patients With Renal Medullary Carcinoma. Clinical Genitourinary Cancer, 2019, 17, 1-6.	1.9	60
13	A Model Linking Sickle Cell Hemoglobinopathies and SMARCB1 Loss in Renal Medullary Carcinoma. Clinical Cancer Research, 2018, 24, 2044-2049.	7.0	56
14	Renal Medullary Carcinoma: Establishing Standards in Practice. Journal of Oncology Practice, 2017, 13, 414-421.	2.5	52
15	<i>SETD2</i> Haploinsufficiency for Microtubule Methylation Is an Early Driver of Genomic Instability in Renal Cell Carcinoma. Cancer Research, 2018, 78, 3135-3146.	0.9	48
16	Epigenome environment interactions accelerate epigenomic aging and unlock metabolically restricted epigenetic reprogramming in adulthood. Nature Communications, 2020, 11, 2316.	12.8	43
17	CARM1 methylates MED12 to regulate its RNA-binding ability. Life Science Alliance, 2018, 1, e201800117.	2.8	43
18	Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis. PLoS ONE, 2017, 12, e0180141.	2.5	37

CHERYL LYN WALKER

#	Article	IF	CITATIONS
19	The Huntingtin-interacting protein SETD2/HYPB is an actin lysine methyltransferase. Science Advances, 2020, 6, .	10.3	29
20	Houston hurricane Harvey health (Houston-3H) study: assessment of allergic symptoms and stress after hurricane Harvey flooding. Environmental Health, 2021, 20, 9.	4.0	26
21	Epigenetic response to hyperoxia in the neonatal lung is sexually dimorphic. Redox Biology, 2020, 37, 101718.	9.0	22
22	Remodeling the epigenome and (epi)cytoskeleton: a new paradigm for co-regulation by methylation. Journal of Experimental Biology, 2020, 223, .	1.7	18
23	A cytoskeletal function for PBRM1 reading methylated microtubules. Science Advances, 2021, 7, .	10.3	17
24	Neuronal SETD2 activity links microtubule methylation to an anxiety-like phenotype in mice. Brain, 2021, 144, 2527-2540.	7.6	17
25	Methylated α-tubulin antibodies recognize a new microtubule modification on mitotic microtubules. MAbs, 2016, 8, 1590-1597.	5.2	15
26	Association of High-Intensity Exercise with Renal Medullary Carcinoma in Individuals with Sickle Cell Trait: Clinical Observations and Experimental Animal Studies. Cancers, 2021, 13, 6022.	3.7	14
27	Molecular determinants for α-tubulin methylation by SETD2. Journal of Biological Chemistry, 2021, 297, 100898.	3.4	11
28	Molecular hallmarks of renal medullary carcinoma: more to c-MYC than meets the eye. Molecular and Cellular Oncology, 2020, 7, 1777060.	0.7	10
29	Hepatic Tumor Formation in Adult Mice Developmentally Exposed to Organotin. Environmental Health Perspectives, 2020, 128, 17010.	6.0	9
30	Responding to Natural and Industrial Disasters: Partnerships and Lessons Learned. Disaster Medicine and Public Health Preparedness, 2022, 16, 885-888.	1.3	8
31	<i>SETD2</i> loss sensitizes cells to PI3KÎ ² and AKT inhibition. Oncotarget, 2019, 10, 647-659.	1.8	7
32	An actin-WHAMM interaction linking SETD2 and autophagy. Biochemical and Biophysical Research Communications, 2021, 558, 202-208.	2.1	6
33	Effect of SMARCB1 deficiency in renal medullary carcinoma (RMC) on genes associated with nucleosome assembly and telomere organization Journal of Clinical Oncology, 2018, 36, 614-614.	1.6	3
34	Comparative transcriptomic profiling of renal medullary carcinoma (RMC) to determine distinct signatures and pathways associated with response to chemotherapy Journal of Clinical Oncology, 2018, 36, 4575-4575.	1.6	1
35	Abstract 1247: Targeting neddylation in combination with cytotoxic chemotherapy for the treatment of renal medullary carcinoma. , 2021, , .		0