
Fiona M Gribble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4422261/publications.pdf Version: 2024-02-01

FIONA M COIRRIE

#	Article	IF	CITATIONS
1	Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein–Coupled Receptor FFAR2. Diabetes, 2012, 61, 364-371.	0.6	1,644
2	An SCN9A channelopathy causes congenital inability to experience pain. Nature, 2006, 444, 894-898.	27.8	1,353
3	Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature, 1997, 387, 179-183.	27.8	723
4	Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nature Medicine, 2011, 17, 1481-1489.	30.7	714
5	Glucose Sensing in L Cells: A Primary Cell Study. Cell Metabolism, 2008, 8, 532-539.	16.2	624
6	Na+- <scp>d</scp> -glucose Cotransporter SGLT1 is Pivotal for Intestinal Glucose Absorption and Glucose-Dependent Incretin Secretion. Diabetes, 2012, 61, 187-196.	0.6	550
7	Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet, The, 2003, 362, 1275-1281.	13.7	526
8	Enteroendocrine Cells: Chemosensors in the Intestinal Epithelium. Annual Review of Physiology, 2016, 78, 277-299.	13.1	438
9	Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature, 2018, 564, 263-267.	27.8	436
10	Sulfonylurea Stimulation of Insulin Secretion. Diabetes, 2002, 51, S368-S376.	0.6	393
11	Correlating structure and function in ATP-sensitive K+ channels. Trends in Neurosciences, 1998, 21, 288-294.	8.6	392
12	Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Reports, 2014, 9, 1202-1208.	6.4	368
13	Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nature Reviews Endocrinology, 2019, 15, 226-237.	9.6	350
14	Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants. Diabetes, 2009, 58, 2070-2083.	0.6	347
15	Identification and Characterization of GLP-1 Receptor–Expressing Cells Using a New Transgenic Mouse Model. Diabetes, 2014, 63, 1224-1233.	0.6	345
16	A Novel Glucose-Sensing Mechanism Contributing to Glucagon-Like Peptide-1 Secretion From the GLUTag Cell Line. Diabetes, 2003, 52, 1147-1154.	0.6	341
17	Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature, 2014, 514, 503-507.	27.8	335
18	GDF15 mediates the effects of metformin on body weight and energy balance. Nature, 2020, 578, 444-448.	27.8	326

#	Article	IF	CITATIONS
19	Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Molecular Metabolism, 2015, 4, 718-731.	6.5	323
20	Overlap of Endocrine Hormone Expression in the Mouse Intestine Revealed by Transcriptional Profiling and Flow Cytometry. Endocrinology, 2012, 153, 3054-3065.	2.8	317
21	GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metabolism, 2019, 29, 707-718.e8.	16.2	286
22	Pain perception is altered by a nucleotide polymorphism in <i>SCN9A</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5148-5153.	7.1	279
23	Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia, 2009, 52, 289-298.	6.3	274
24	Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications, 2015, 6, 7629.	12.8	274
25	Sulphonylurea action revisited: the post-cloning era. Diabetologia, 2003, 46, 875-891.	6.3	270
26	A Novel Method for Measurement of Submembrane ATP Concentration. Journal of Biological Chemistry, 2000, 275, 30046-30049.	3.4	257
27	Glucose-Sensing in Glucagon-Like Peptide-1-Secreting Cells. Diabetes, 2002, 51, 2757-2763.	0.6	256
28	Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein–Coupled Bile Acid Receptors. Endocrinology, 2015, 156, 3961-3970.	2.8	253
29	GLP-1 Inhibits and Adrenaline Stimulates Glucagon Release by Differential Modulation of N- and L-Type Ca2+ Channel-Dependent Exocytosis. Cell Metabolism, 2010, 11, 543-553.	16.2	225
30	Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications, 2014, 5, 4639.	12.8	220
31	The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides, 2016, 77, 28-37.	2.4	210
32	Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia, 2004, 47, 1592-1601.	6.3	208
33	Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. American Journal of Clinical Nutrition, 2009, 89, 106-113.	4.7	201
34	G-Protein-Coupled Receptors in Intestinal Chemosensation. Cell Metabolism, 2012, 15, 421-431.	16.2	196
35	Gut chemosensing mechanisms. Journal of Clinical Investigation, 2015, 125, 908-917.	8.2	194
36	Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nature Cell Biology, 2018, 20, 909-916.	10.3	188

3

#	Article	IF	CITATIONS
37	Relapsing diabetes can result from moderately activating mutations in KCNJ11. Human Molecular Genetics, 2005, 14, 925-934.	2.9	184
38	Molecular mechanisms underlying bile acidâ€stimulated glucagonâ€like peptideâ€1 secretion. British Journal of Pharmacology, 2012, 165, 414-423.	5.4	179
39	Role of KATP Channels in Glucose-Regulated Glucagon Secretion and Impaired Counterregulation in Type 2 Diabetes. Cell Metabolism, 2013, 18, 871-882.	16.2	179
40	New windows on the mechanism of action of KATP channel openers. Trends in Pharmacological Sciences, 2000, 21, 439-445.	8.7	178
41	Nutritional regulation of glucagonâ€like peptideâ€1 secretion. Journal of Physiology, 2009, 587, 27-32.	2.9	177
42	Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia, 2012, 55, 2445-2455.	6.3	175
43	Glucose-Dependent Insulinotropic Polypeptide Receptor-Expressing Cells in the Hypothalamus Regulate Food Intake. Cell Metabolism, 2019, 30, 987-996.e6.	16.2	171
44	Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets. Diabetologia, 2016, 59, 2156-2165.	6.3	169
45	Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience, 2011, 180, 111-121.	2.3	159
46	Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor. Diabetologia, 2013, 56, 2688-2696.	6.3	158
47	Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels. Nature, 1996, 379, 545-548.	27.8	156
48	Roles of the Gut in Glucose Homeostasis. Diabetes Care, 2016, 39, 884-892.	8.6	155
49	TCF7L2 Polymorphisms Modulate Proinsulin Levels and Â-Cell Function in a British Europid Population. Diabetes, 2007, 56, 1943-1947.	0.6	154
50	Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia, 2013, 56, 1413-1416.	6.3	150
51	The Interaction of nucleotides with the tolbutamide block of cloned atp-sensitive k+channel currents expressed in xenopus oocytes: a reinterpretation. Journal of Physiology, 1997, 504, 35-45.	2.9	149
52	Mucolipin-1 Is a Lysosomal Membrane Protein Required for Intracellular Lactosylceramide Traffic. Traffic, 2006, 7, 1388-1398.	2.7	143
53	The Melanocortin-4 Receptor Is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-like Peptide 1 InÂVivo. Cell Metabolism, 2014, 20, 1018-1029.	16.2	139
54	Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Molecular Metabolism, 2018, 11, 84-95.	6.5	135

#	Article	IF	CITATIONS
55	Glutamine Triggers and Potentiates Glucagon-Like Peptide-1 Secretion by Raising Cytosolic Ca2+ and cAMP. Endocrinology, 2011, 152, 405-413.	2.8	134
56	Molecular mechanisms underlying nutrient-stimulated incretin secretion. Expert Reviews in Molecular Medicine, 2010, 12, e1.	3.9	128
57	Leptin Directly Depolarizes Preproglucagon Neurons in the Nucleus Tractus Solitarius. Diabetes, 2010, 59, 1890-1898.	0.6	127
58	Impairment of the Ubiquitin-Proteasome Pathway Is a Downstream Endoplasmic Reticulum Stress Response Induced by Extracellular Human Islet Amyloid Polypeptide and Contributes to Pancreatic β-Cell Apoptosis. Diabetes, 2007, 56, 2284-2294.	0.6	125
59	The G Protein-coupled Receptor Family C Group 6 Subtype A (GPRC6A) Receptor Is Involved in Amino Acid-induced Glucagon-like Peptide-1 Secretion from GLUTag Cells. Journal of Biological Chemistry, 2013, 288, 4513-4521.	3.4	125
60	Hypogonadotropic Hypogonadism due to a Novel Missense Mutation in the First Extracellular Loop of the Neurokinin B Receptor. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3633-3639.	3.6	122
61	Important Role of the GLP-1 Axis for Glucose Homeostasis after Bariatric Surgery. Cell Reports, 2019, 26, 1399-1408.e6.	6.4	121
62	Insulin-like peptide 5 is an orexigenic gastrointestinal hormone. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11133-11138.	7.1	120
63	Mechanism of Cloned ATP-sensitive Potassium Channel Activation by Oleoyl-CoA. Journal of Biological Chemistry, 1998, 273, 26383-26387.	3.4	119
64	Preproglucagon Neurons in the Nucleus of the Solitary Tract Are the Main Source of Brain GLP-1, Mediate Stress-Induced Hypophagia, and Limit Unusually Large Intakes of Food. Diabetes, 2019, 68, 21-33.	0.6	119
65	Generation of L Cells in Mouse and Human Small Intestine Organoids. Diabetes, 2014, 63, 410-420.	0.6	118
66	Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nature Communications, 2019, 10, 139.	12.8	117
67	Activation of the GLP-1 Receptors in the Nucleus of the Solitary Tract Reduces Food Reward Behavior and Targets the Mesolimbic System. PLoS ONE, 2015, 10, e0119034.	2.5	116
68	Hierarchical neural architecture underlying thirst regulation. Nature, 2018, 555, 204-209.	27.8	113
69	Sodium-Coupled Glucose Cotransporters Contribute to Hypothalamic Glucose Sensing. Diabetes, 2006, 55, 3381-3386.	0.6	109
70	Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia, 2008, 51, 2252-2262.	6.3	109
71	Central and peripheral GLP-1 systems independently suppress eating. Nature Metabolism, 2021, 3, 258-273.	11.9	107
72	High fat diet impairs the function of glucagon-like peptide-1 producing L-cells. Peptides, 2016, 77, 21-27.	2.4	104

#	Article	IF	CITATIONS
73	Comparison of Human and Murine Enteroendocrine Cells by Transcriptomic and Peptidomic Profiling. Diabetes, 2019, 68, 1062-1072.	0.6	100
74	Nutrient detection by incretin hormone secreting cells. Physiology and Behavior, 2012, 106, 387-393.	2.1	97
75	Differential selectivity of insulin secretagogues. Journal of Diabetes and Its Complications, 2003, 17, 11-15.	2.3	96
76	Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. American Journal of Physiology - Renal Physiology, 2014, 306, G622-G630.	3.4	94
77	Tissue-specific effects of sulfonylureas. Journal of Diabetes and Its Complications, 2000, 14, 192-196.	2.3	88
78	Glutamine Reduces Postprandial Glycemia and Augments the Glucagon-Like Peptide-1 Response in Type 2 Diabetes Patients. Journal of Nutrition, 2011, 141, 1233-1238.	2.9	85
79	Intestinal Sensing of Nutrients. Handbook of Experimental Pharmacology, 2012, , 309-335.	1.8	83
80	The gut endocrine system as a coordinator of postprandial nutrient homoeostasis. Proceedings of the Nutrition Society, 2012, 71, 456-462.	1.0	79
81	Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides, 2016, 77, 16-20.	2.4	79
82	CCK Stimulation of GLP-1 Neurons Involves α1-Adrenoceptor–Mediated Increase in Glutamatergic Synaptic Inputs. Diabetes, 2011, 60, 2701-2709.	0.6	78
83	Na ⁺ current properties in islet α―and βâ€cells reflect cellâ€specific <i>Scn3a</i> and <i>Scn9a</i> expression. Journal of Physiology, 2014, 592, 4677-4696.	2.9	78
84	Molecular mechanisms of incretin hormone secretion. Current Opinion in Pharmacology, 2013, 13, 922-927.	3.5	77
85	GPR119, a Major Enteroendocrine Sensor of Dietary Triglyceride Metabolites Coacting in Synergy With FFA1 (GPR40). Endocrinology, 2016, 157, 4561-4569.	2.8	77
86	Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice – Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Molecular Metabolism, 2019, 29, 158-169.	6.5	77
87	Peptide production and secretion in GLUTag, NCI-H716, and STC-1 cells: a comparison to native L-cells. Journal of Molecular Endocrinology, 2016, 56, 201-211.	2.5	76
88	Stimulation of incretin secreting cells. Therapeutic Advances in Endocrinology and Metabolism, 2016, 7, 24-42.	3.2	76
89	The antimalarial agent mefloquine inhibits ATP-sensitive K-channels. British Journal of Pharmacology, 2000, 131, 756-760.	5.4	75
90	Neurochemical Characterization of Body Weight-Regulating Leptin Receptor Neurons in the Nucleus of the Solitary Tract. Endocrinology, 2012, 153, 4600-4607.	2.8	74

#	Article	IF	CITATIONS
91	Metabolic Messengers: glucagon-like peptide 1. Nature Metabolism, 2021, 3, 142-148.	11.9	73
92	GLP-1 Receptor Stimulation of the Lateral Parabrachial Nucleus Reduces Food Intake: Neuroanatomical, Electrophysiological, and Behavioral Evidence. Endocrinology, 2014, 155, 4356-4367.	2.8	71
93	LKB1 and AMPK differentially regulate pancreatic β ell identity. FASEB Journal, 2014, 28, 4972-4985.	0.5	71
94	Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells. Peptides, 2016, 77, 9-15.	2.4	70
95	Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents. Diabetologia, 2012, 55, 3094-3103.	6.3	68
96	Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine. Molecular Metabolism, 2017, 6, 1296-1303.	6.5	68
97	Cyclic AMP triggers glucagon-like peptide-1 secretion from the GLUTag enteroendocrine cell line. Diabetologia, 2007, 50, 2181-2189.	6.3	67
98	A Transcriptome-Led Exploration of Molecular Mechanisms Regulating Somatostatin-Producing D-Cells in the Gastric Epithelium. Endocrinology, 2015, 156, 3924-3936.	2.8	67
99	Glucagon-Like Peptide 1 and Its Analogs Act in the Dorsal Raphe and Modulate Central Serotonin to Reduce Appetite and Body Weight. Diabetes, 2017, 66, 1062-1073.	0.6	66
100	PYY plays a key role in the resolution of diabetes following bariatric surgery in humans. EBioMedicine, 2019, 40, 67-76.	6.1	65
101	Sulfonylurea sensitivity of adenosine triphosphate-sensitive potassium channels fromcells and extrapancreatic tissues. Metabolism: Clinical and Experimental, 2000, 49, 3-6.	3.4	64
102	Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nature Neuroscience, 2021, 24, 913-929.	14.8	64
103	Submembrane ATP and Ca ²⁺ kinetics in α-cells: unexpected signaling for glucagon secretion. FASEB Journal, 2015, 29, 3379-3388.	0.5	58
104	No direct effect of SGLT2 activity on glucagon secretion. Diabetologia, 2019, 62, 1011-1023.	6.3	58
105	G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia, 2016, 59, 229-233.	6.3	56
106	Involvement of the N-terminus of Kir6.2 in the inhibition of the KATPchannel by ATP. Journal of Physiology, 1999, 514, 19-25.	2.9	54
107	Differential Response of K _{ATP} Channels Containing SUR2A or SUR2B Subunits to Nucleotides and Pinacidil. Molecular Pharmacology, 2000, 58, 1318-1325.	2.3	54
108	Mechanisms underlying glucoseâ€dependent insulinotropic polypeptide and glucagonâ€like peptideâ€1 secretion. Journal of Diabetes Investigation, 2016, 7, 13-19.	2.4	54

#	Article	IF	CITATIONS
109	L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes, 2020, 69, 614-623.	0.6	54
110	Preproglucagon (PPG) neurons innervate neurochemicallyidentified autonomic neurons in the mouse brainstem. Neuroscience, 2013, 229, 130-143.	2.3	52
111	Microbial regulation of the L cell transcriptome. Scientific Reports, 2018, 8, 1207.	3.3	52
112	Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Scientific Reports, 2021, 11, 2529.	3.3	52
113	Targeting development of incretin-producing cells increases insulin secretion. Journal of Clinical Investigation, 2015, 125, 379-385.	8.2	51
114	The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagonâ€like peptideâ€1 release. British Journal of Pharmacology, 2009, 157, 633-644.	5.4	50
115	Novel <i>SCN9A</i> Mutations Underlying Extreme Pain Phenotypes: Unexpected Electrophysiological and Clinical Phenotype Correlations. Journal of Neuroscience, 2015, 35, 7674-7681.	3.6	50
116	Stimulation of GLP-1 Secretion Downstream of the Ligand-Gated Ion Channel TRPA1. Diabetes, 2015, 64, 1202-1210.	0.6	50
117	Free Fatty Acid Receptors in Enteroendocrine Cells. Endocrinology, 2018, 159, 2826-2835.	2.8	50
118	Signalling in the gut endocrine axis. Physiology and Behavior, 2017, 176, 183-188.	2.1	49
119	Gastrectomy with Roux-en-Y reconstruction as a lean model of bariatric surgery. Surgery for Obesity and Related Diseases, 2018, 14, 562-568.	1.2	49
120	Chylomicrons stimulate incretin secretion in mouse and human cells. Diabetologia, 2017, 60, 2475-2485.	6.3	47
121	Mechanistic insights into the detection of free fatty and bile acids by ileal glucagon-like peptide-1 secreting cells. Molecular Metabolism, 2018, 7, 90-101.	6.5	46
122	The cytokine GDF15 signals through a population of brainstem cholecystokinin neurons to mediate anorectic signalling. ELife, 2020, 9, .	6.0	46
123	Co-storage and release of insulin-like peptide-5, glucagon-like peptide-1 and peptideYY from murine and human colonic enteroendocrine cells. Molecular Metabolism, 2018, 16, 65-75.	6.5	45
124	Selective stimulation of colonic L cells improves metabolic outcomes in mice. Diabetologia, 2020, 63, 1396-1407.	6.3	45
125	PPARÎ ² /δ affects pancreatic Î ² cell mass and insulin secretion in mice. Journal of Clinical Investigation, 2012, 122, 4105-4117.	8.2	45
126	The incretin hormone glucagonâ€like peptide 1 increases mitral cell excitability by decreasing conductance of a voltageâ€dependent potassium channel. Journal of Physiology, 2016, 594, 2607-2628.	2.9	43

#	Article	IF	CITATIONS
127	The aromatic amino acid sensor GPR142 controls metabolism through balanced regulation of pancreatic and gut hormones. Molecular Metabolism, 2019, 19, 49-64.	6.5	43
128	lleo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes. EBioMedicine, 2020, 55, 102759.	6.1	43
129	Functional and Molecular Adaptations of Enteroendocrine L-Cells in Male Obese Mice Are Associated With Preservation of Pancreatic α-Cell Function and Prevention of Hyperglycemia. Endocrinology, 2016, 157, 3832-3843.	2.8	42
130	Labeling and Characterization of Human GLP-1-Secreting L-cells in Primary Ileal Organoid Culture. Cell Reports, 2020, 31, 107833.	6.4	42
131	Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells. Molecular Metabolism, 2015, 4, 619-630.	6.5	40
132	Peptidomics: A Review of Clinical Applications and Methodologies. Journal of Proteome Research, 2021, 20, 3782-3797.	3.7	40
133	Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients, 2021, 13, 883.	4.1	39
134	The role of gut endocrine cells in control of metabolism and appetite. Experimental Physiology, 2014, 99, 1116-1120.	2.0	38
135	Characterisation of new KATP-channel mutations associated with congenital hyperinsulinism in the Finnish population. Diabetologia, 2003, 46, 241-249.	6.3	35
136	GLP1- and GIP-producing cells rarely overlap and differ by bombesin receptor-2 expression and responsiveness. Journal of Endocrinology, 2016, 228, 39-48.	2.6	35
137	Effect of reducing portion size at a compulsory meal on later energy intake, gut hormones, and appetite in overweight adults. Obesity, 2015, 23, 1362-1370.	3.0	34
138	The core clock gene, Bmal1, and its downstream target, the SNARE regulatory protein secretagogin, are necessary for circadian secretion of glucagon-like peptide-1. Molecular Metabolism, 2020, 31, 124-137.	6.5	34
139	Galanin inhibits GLPâ€1 and GIP secretion via the GAL ₁ receptor in enteroendocrine L and K cells. British Journal of Pharmacology, 2016, 173, 888-898.	5.4	33
140	Peptidomic analysis of endogenous plasma peptides from patients with pancreatic neuroendocrine tumours. Rapid Communications in Mass Spectrometry, 2018, 32, 1414-1424.	1.5	32
141	Paracrine crosstalk between intestinal L- and D-cells controls secretion of glucagon-like peptide-1 in mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1081-E1093.	3.5	32
142	RD Lawrence Lecture 2008 Targeting GLPâ€l release as a potential strategy for the therapy of Type 2 diabetes. Diabetic Medicine, 2008, 25, 889-894.	2.3	30
143	The SNARE Protein Syntaxin-1a Plays an Essential Role in Biphasic Exocytosis of the Incretin Hormone Glucagon-Like Peptide 1. Diabetes, 2017, 66, 2327-2338.	0.6	30
144	Synaptic Inputs to the Mouse Dorsal Vagal Complex and Its Resident Preproglucagon Neurons. Journal of Neuroscience, 2019, 39, 9767-9781.	3.6	30

#	Article	IF	CITATIONS
145	Heteromeric channel formation and Ca2+-free media reduce the toxic effect of theweaverKir3.2 allele. FEBS Letters, 1996, 390, 253-257.	2.8	28
146	Models and Tools for Studying Enteroendocrine Cells. Endocrinology, 2018, 159, 3874-3884.	2.8	28
147	A higher power for insulin. Nature, 2005, 434, 965-966.	27.8	27
148	Inhibition of the malate–aspartate shuttle in mouse pancreatic islets abolishes glucagon secretion without affecting insulin secretion. Biochemical Journal, 2015, 468, 49-63.	3.7	27
149	Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons. Neuroscience, 2015, 284, 872-887.	2.3	27
150	Gut Hormone Regulation and Secretion via FFA1 and FFA4. Handbook of Experimental Pharmacology, 2016, 236, 181-203.	1.8	26
151	Liquid chromatography/mass spectrometry based detection and semiâ€quantitative analysis of INSL5 in human and murine tissues. Rapid Communications in Mass Spectrometry, 2017, 31, 1963-1973.	1.5	26
152	Adenosine triphosphate is co-secreted with glucagon-like peptide-1 to modulate intestinal enterocytes and afferent neurons. Nature Communications, 2019, 10, 1029.	12.8	26
153	SGLT2 is not expressed in pancreatic \hat{l}_{\pm} - and \hat{l}^2 -cells, and its inhibition does not directly affect glucagon and insulin secretion in rodents and humans. Molecular Metabolism, 2020, 42, 101071.	6.5	26
154	Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans. Endocrinology, 2016, 157, 3821-3831.	2.8	25
155	Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. , 2018, 8, 1603-1638.		25
156	Essential Role of Syntaxin-Binding Protein-1 in the Regulation of Glucagon-Like Peptide-1 Secretion. Endocrinology, 2020, 161, .	2.8	25
157	Secretin release after Roux-en-Y gastric bypass reveals a population of glucose-sensitive S cells in distal small intestine. International Journal of Obesity, 2020, 44, 1859-1871.	3.4	25
158	α _{2A} -Adrenergic Receptors and Type 2 Diabetes. New England Journal of Medicine, 2010, 362, 361-362.	27.0	24
159	Role of phosphodiesterase and adenylate cyclase isozymes in murine colonic glucagonâ€ŀike peptide 1 secreting cells. British Journal of Pharmacology, 2011, 163, 261-271.	5.4	24
160	Role of enteroendocrine L ells in arginine vasopressinâ€mediated inhibition of colonic anion secretion. Journal of Physiology, 2016, 594, 4865-4878.	2.9	24
161	Assessment and Management of Anti-Insulin Autoantibodies in Varying Presentations of Insulin Autoimmune Syndrome. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3845-3855.	3.6	24
162	A unique olfactory bulb microcircuit driven by neurons expressing the precursor to glucagon-like peptide 1. Scientific Reports, 2019, 9, 15542.	3.3	24

#	Article	IF	CITATIONS
163	Effects of long-acting GIP, xenin and oxyntomodulin peptide analogues on alpha-cell transdifferentiation in insulin-deficient diabetic GluCreERT2;ROSA26-eYFP mice. Peptides, 2020, 125, 170205.	2.4	24
164	LKB1 and AMPKα1 are required in pancreatic alpha cells for the normal regulation of glucagon secretion and responses to hypoglycemia. Molecular Metabolism, 2015, 4, 277-286.	6.5	23
165	The effect of encapsulated glutamine on gut peptide secretion in human volunteers. Peptides, 2016, 77, 38-46.	2.4	22
166	Serotonergic modulation of the activity of GLP-1 producing neurons in the nucleus of the solitary tract in mouse. Molecular Metabolism, 2017, 6, 909-921.	6.5	22
167	Development and characterisation of a novel glucagon like peptide-1 receptor antibody. Diabetologia, 2018, 61, 711-721.	6.3	22
168	Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R115-R123.	1.8	21
169	α-Cell Dysfunctions and Molecular Alterations in Male Insulinopenic Diabetic Mice Are Not Completely Corrected by Insulin. Endocrinology, 2016, 157, 536-547.	2.8	21
170	Quantitative mass spectrometry for human melanocortin peptides inÂvitro and inÂvivo suggests prominent roles for β-MSH and desacetyl α-MSH in energy homeostasis. Molecular Metabolism, 2018, 17, 82-97.	6.5	21
171	The glucose-dependent insulinotropic polypeptide signaling axis in the central nervous system. Peptides, 2020, 125, 170194.	2.4	21
172	Glycemic Effects and Safety of L-Glutamine Supplementation with or without Sitagliptin in Type 2 Diabetes Patients—A Randomized Study. PLoS ONE, 2014, 9, e113366.	2.5	21
173	No differences in mortality between users of pancreatic-specific and non-pancreatic-specific sulphonylureas: a cohort analysis. Diabetes, Obesity and Metabolism, 2008, 10, 350-352.	4.4	20
174	Mixed Primary Cultures of Murine Small Intestine Intended for the Study of Gut Hormone Secretion and Live Cell Imaging of Enteroendocrine Cells. Journal of Visualized Experiments, 2017, , .	0.3	20
175	Gastrointestinal Hormones â~†. , 2018, , 31-70.		20
176	GIPR Is Predominantly Localized to Nonadipocyte Cell Types Within White Adipose Tissue. Diabetes, 2022, 71, 1115-1127.	0.6	20
177	Glucose stimulates somatostatin secretion in pancreatic δ-cells by cAMP-dependent intracellular Ca2+ release. Journal of General Physiology, 2019, 151, 1094-1115.	1.9	19
178	Suppression of enteroendocrine cell glucagon-like peptide (GLP)-1 release by fat-induced small intestinal ketogenesis: a mechanism targeted by Roux-en-Y gastric bypass surgery but not by preoperative very-low-calorie diet. Gut, 2020, 69, 1423-1431.	12,1	19
179	Analysis of the differential modulation of sulphonylurea block of Â-cell and cardiac ATP-sensitive K+ (KATP) channels by Mg-nucleotides. Journal of Physiology, 2003, 547, 159-168.	2.9	19
180	Cellular mechanisms governing glucose-dependent insulinotropic polypeptide secretion. Peptides, 2020, 125, 170206.	2.4	18

#	Article	IF	CITATIONS
181	Placental secretome characterization identifies candidates for pregnancy complications. Communications Biology, 2021, 4, 701.	4.4	18
182	CIPR Function in the Central Nervous System: Implications and Novel Perspectives for GIP-Based Therapies in Treating Metabolic Disorders. Diabetes, 2021, 70, 1938-1944.	0.6	17
183	In vitro mechanism of action on insulin release of S-22068, a new putative antidiabetic compound. British Journal of Pharmacology, 1999, 128, 1021-1026.	5.4	16
184	Medicago sativa L., a functional food to relieve hypertension and metabolic disorders in a spontaneously hypertensive rat model. Journal of Functional Foods, 2016, 26, 470-484.	3.4	16
185	Roux-en-Y Gastric Bypass Surgery in the Management of Familial Partial Lipodystrophy Type 1. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3616-3620.	3.6	16
186	Gut peptide regulation of food intake – evidence for the modulation of hedonic feeding. Journal of Physiology, 2022, 600, 1053-1078.	2.9	15
187	Targeted intestinal delivery of incretin secretagogues—towards new diabetes and obesity therapies. Peptides, 2018, 100, 68-74.	2.4	14
188	Development and validation of an LC-MS/MS method for detection and quantification of in vivo derived metabolites of [Pyr1]apelin-13 in humans. Scientific Reports, 2019, 9, 19934.	3.3	14
189	Antidiabetic drug therapy alleviates type 1 diabetes in mice by promoting pancreatic α-cell transdifferentiation. Biochemical Pharmacology, 2020, 182, 114216.	4.4	14
190	Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance. PLoS ONE, 2016, 11, e0149549.	2.5	13
191	Rapid sensing of l -leucine by human and murine hypothalamic neurons: Neurochemical and mechanistic insights. Molecular Metabolism, 2018, 10, 14-27.	6.5	12
192	Positive Effects of NPY1 Receptor Activation on Islet Structure Are Driven by Pancreatic Alpha- and Beta-Cell Transdifferentiation in Diabetic Mice. Frontiers in Endocrinology, 2021, 12, 633625.	3.5	12
193	Genetically Predicted Glucose-Dependent Insulinotropic Polypeptide (GIP) Levels and Cardiovascular Disease Risk Are Driven by Distinct Causal Variants in the <i>GIPR</i> Region. Diabetes, 2021, 70, 2706-2719.	0.6	12
194	Abcc5 Knockout Mice Have Lower Fat Mass and Increased Levels of Circulating GLPâ€1. Obesity, 2019, 27, 1292-1304.	3.0	11
195	Mass spectrometric characterisation of the circulating peptidome following oral glucose ingestion in control and gastrectomised patients. Rapid Communications in Mass Spectrometry, 2020, 34, e8849.	1.5	11
196	Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice. Molecular Metabolism, 2020, 35, 100954.	6.5	11
197	The Human and Mouse Islet Peptidome: Effects of Obesity and Type 2 Diabetes, and Assessment of Intraislet Production of Glucagon-like Peptide-1. Journal of Proteome Research, 2021, 20, 4507-4517.	3.7	11
198	A comparative transcriptomic analysis of glucagon-like peptide-1 receptor- and glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus. Appetite, 2022, 174, 106022.	3.7	11

#	Article	IF	CITATIONS
199	The Peutz-Jeghers kinase LKB1 suppresses polyp growth from intestinal cells of a proglucagon-expressing lineage. DMM Disease Models and Mechanisms, 2014, 7, 1275-86.	2.4	10
200	Stimulation of motilin secretion by bile, free fatty acids, and acidification in human duodenal organoids. Molecular Metabolism, 2021, 54, 101356.	6.5	10
201	Obesity therapeutics: The end of the beginning. Cell Metabolism, 2021, 33, 705-706.	16.2	9
202	Glucose-Dependent Insulinotropic Polypeptide—A Postprandial Hormone with Unharnessed Metabolic Potential. Annual Review of Nutrition, 2022, 42, 21-44.	10.1	9
203	Intolerant of glucose and gasping for oxygen. Nature Medicine, 2009, 15, 247-249.	30.7	8
204	Characterisation of proguanylin expressing cells in the intestine – evidence for constitutive luminal secretion. Scientific Reports, 2019, 9, 15574.	3.3	8
205	Immunosuppression overcomes insulin- and vector-specific immune responses that limit efficacy of AAV2/8-mediated insulin gene therapy in NOD mice. Gene Therapy, 2019, 26, 40-56.	4.5	8
206	Ghrelin Does Not Directly Stimulate Secretion of Glucagon-like Peptide-1. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 266-275.	3.6	8
207	Behavioural and neurochemical mechanisms underpinning the feeding-suppressive effect of GLP-1/CCK combinatorial therapy. Molecular Metabolism, 2021, 43, 101118.	6.5	8
208	Accelerating cryoprotectant diffusion kinetics improves cryopreservation of pancreatic islets. Scientific Reports, 2021, 11, 10418.	3.3	8
209	Acetyl-CoA-carboxylase 1 (ACC1) plays a critical role in glucagon secretion. Communications Biology, 2022, 5, 238.	4.4	8
210	An Absorbing Sense of Sweetness: Figure 1. Diabetes, 2015, 64, 338-340.	0.6	7
211	Acipimox Acutely Increases GLP-1 Concentrations in Overweight Subjects and Hypopituitary Patients. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2581-2592.	3.6	7
212	Inactivation of Ppp1r15a minimises weight gain and insulin resistance during caloric excess in female mice. Scientific Reports, 2019, 9, 2903.	3.3	7
213	Expected values for gastrointestinal and pancreatic hormone concentrations in healthy volunteers in the fasting and postprandial state. Annals of Clinical Biochemistry, 2021, 58, 108-116.	1.6	7
214	Chemosensing in enteroendocrine cells: mechanisms and therapeutic opportunities. Current Opinion in Endocrinology, Diabetes and Obesity, 2021, 28, 222-231.	2.3	7
215	Peptidomics of enteroendocrine cells and characterisation of potential effects of a novel preprogastrin derived-peptide on glucose tolerance in lean mice. Peptides, 2021, 140, 170532.	2.4	7
216	Heterogeneity of glucagonomas due to differential processing of proglucagon-derived peptides. Endocrinology, Diabetes and Metabolism Case Reports, 2015, 2015, 150105.	0.5	7

#	Article	IF	CITATIONS
217	Towards the harnessing of gut feelings. Current Opinion in Pharmacology, 2013, 13, 909-911.	3.5	6
218	Pregnane glycosides from Cynanchum menarandrense. Steroids, 2017, 125, 27-32.	1.8	6
219	Increased C-Peptide Immunoreactivity in Insulin Autoimmune Syndrome (Hirata Disease) Due to High Molecular Weight Proinsulin. Clinical Chemistry, 2021, 67, 854-862.	3.2	6
220	The Enteroendocrine System in Obesity. Handbook of Experimental Pharmacology, 2022, , 109-129.	1.8	6
221	Open to Control — New Hope for Patients with Neonatal Diabetes. New England Journal of Medicine, 2004, 350, 1817-1818.	27.0	5
222	Organoid Sample Preparation and Extraction for LC-MS Peptidomics. STAR Protocols, 2020, 1, 100164.	1.2	5
223	Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity. Scientific Reports, 2021, 11, 17571.	3.3	5
224	Diet-Induced Obese Mice and Leptin-Deficient Lepob/ob Mice Exhibit Increased Circulating GIP Levels Produced by Different Mechanisms. International Journal of Molecular Sciences, 2019, 20, 4448.	4.1	4
225	A Tag to Track Short Chain Fatty Acid Sensors. Endocrinology, 2013, 154, 3492-3494.	2.8	3
226	Optogenetic Analysis of Depolarization-Dependent Glucagonlike Peptide-1 Release. Endocrinology, 2017, 158, 3426-3434.	2.8	2
227	L-Cell Expression of Melanocortin-4-Receptor Is Marginal in Most of the Small Intestine in Mice and Humans and Direct Stimulation of Small Intestinal Melanocortin-4-Receptors in Mice and Rats Does Not Affect GLP-1 Secretion. Frontiers in Endocrinology, 2021, 12, 690387.	3.5	2
228	In vitro metabolism of synthetic Elabela/Toddler (ELA-32) peptide in human plasma and kidney homogenates analyzed with mass spectrometry and validation of endogenous peptide quantification in tissues by ELISA. Peptides, 2021, 145, 170642.	2.4	2
229	Expression of the relaxin family peptide 4 receptor by enterochromaffin cells of the mouse large intestine. Cell and Tissue Research, 0, , .	2.9	2
230	KATP channel pharmacology in the pancreas and the cardiovascular system. International Congress Series, 2003, 1253, 279-287.	0.2	1
231	Scaling it down: new in vitro tools to get the balance right. Biochemical Journal, 2017, 474, 47-50.	3.7	1
232	Nutrient sensing in the gut and the regulation of appetite. Current Opinion in Endocrine and Metabolic Research, 2022, 23, 100318.	1.4	1
233	Targeting the Enteroendocrine System for Treatment of Obesity. Handbook of Experimental Pharmacology, 2022, , 1.	1.8	0