David P Toczyski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/442205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redundant targeting of Isr1 by two CDKs in mitotic cells. Current Genetics, 2021, 67, 79-83.	1.7	0
2	A comprehensive phenotypic CRISPR-Cas9 screen of the ubiquitin pathway uncovers roles of ubiquitin ligases in mitosis. Molecular Cell, 2021, 81, 1319-1336.e9.	9.7	24
3	Chemical-genetic CRISPR-Cas9 screens in human cells using a pathway-specific library. STAR Protocols, 2021, 2, 100685.	1.2	4
4	Fifty years of cycling. Molecular Biology of the Cell, 2020, 31, 2868-2870.	2.1	1
5	The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. PLoS Genetics, 2020, 16, e1008840.	3.5	3
6	The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. , 2020, 16, e1008840.		0
7	The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. , 2020, 16, e1008840.		0
8	The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. , 2020, 16, e1008840.		0
9	The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. , 2020, 16, e1008840.		0
10	Mck1 kinase is a new player in the DNA damage checkpoint pathway. PLoS Genetics, 2019, 15, e1008372.	3.5	2
11	Shelterin and subtelomeric <scp>DNA</scp> sequences control nucleosome maintenance and genome stability. EMBO Reports, 2019, 20, .	4.5	30
12	The Yeast DNA Damage Checkpoint Kinase Rad53 Targets the Exoribonuclease, Xrn1. G3: Genes, Genomes, Genetics, 2018, 8, 3931-3944.	1.8	21
13	Phosphorylation and Proteasome Recognition of the mRNA-Binding Protein Cth2 Facilitates Yeast Adaptation to Iron Deficiency. MBio, 2018, 9, .	4.1	11
14	Genetic analysis reveals functions of atypical polyubiquitin chains. ELife, 2018, 7, .	6.0	12
15	Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase–polyubiquitin-binding domain fusions (ligase traps). Nature Protocols, 2016, 11, 291-301.	12.0	32
16	Acetylome Profiling Reveals Overlap in the Regulation of Diverse Processes by Sirtuins, Gcn5, and Esa1. Molecular and Cellular Proteomics, 2015, 14, 162-176.	3.8	59
17	Prb1 Protease Activity Is Required for Its Recognition by the F-Box Protein Saf1. Biochemistry, 2015, 54, 4423-4426.	2.5	6
18	Ndd1 Turnover by SCFGrr1 Is Inhibited by the DNA Damage Checkpoint in Saccharomyces cerevisiae. PLoS Genetics, 2015, 11, e1005162.	3.5	10

DAVID P TOCZYSKI

#	Article	IF	CITATIONS
19	Parallel Parkin: Cdc20 Takes a New Partner. Molecular Cell, 2015, 60, 3-4.	9.7	0
20	DNA Damage Regulates Translation through \hat{I}^2 -TRCP Targeting of CReP. PLoS Genetics, 2015, 11, e1005292.	3.5	33
21	Rad53 Downregulates Mitotic Gene Transcription by Inhibiting the Transcriptional Activator Ndd1. Molecular and Cellular Biology, 2014, 34, 725-738.	2.3	14
22	Hst3 is turned over by a replication stress-responsive SCF ^{Cdc4} phospho-degron. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5962-5967.	7.1	19
23	Ubiquitin Ligase Trapping Identifies an SCFSaf1 Pathway Targeting Unprocessed Vacuolar/Lysosomal Proteins. Molecular Cell, 2014, 53, 148-161.	9.7	49
24	Polymerase Stalling during Replication, Transcription and Translation. Current Biology, 2014, 24, R445-R452.	3.9	36
25	Ubiquitination of Cdc20 by the APC Occurs through an Intramolecular Mechanism. Current Biology, 2011, 21, 1870-1877.	3.9	40
26	Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature, 2010, 467, 479-483.	27.8	179
27	A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic–gluconeogenic switch. Nature Cell Biology, 2007, 9, 1184-1191.	10.3	77
28	Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature, 2007, 446, 806-810.	27.8	806
29	Securin and B-cyclin/CDK are the only essential targets of the APC. Nature Cell Biology, 2003, 5, 1090-1094.	10.3	163
30	A unified view of the DNA-damage checkpoint. Current Opinion in Cell Biology, 2002, 14, 237-245.	5.4	429
31	CDC5 and CKII Control Adaptation to the Yeast DNA Damage Checkpoint. Cell, 1997, 90, 1097-1106.	28.9	425