
Claudio Giovannini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4420270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Obesity-Associated Inflammation: Does Curcumin Exert a Beneficial Role?. Nutrients, 2021, 13, 1021.	4.1	16
2	Promoting Health and Food Literacy through Nutrition Education at Schools: The Italian Experience with MaestraNatura Program. Nutrients, 2021, 13, 1547.	4.1	9
3	Dietary habits affect fatty acid composition of visceral adipose tissue in subjects with colorectal cancer or obesity. European Journal of Nutrition, 2020, 59, 1463-1472.	3.9	7
4	Extra virgin olive oil polyphenols: biological properties and antioxidant activity. , 2020, , 225-233.		7
5	Role of Protocatechuic Acid in Obesity-Related Pathologies: An Update. , 2018, , 181-192.		1
6	Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: possible role for PTP1B. International Journal of Obesity, 2018, 42, 2012-2021.	3.4	54
7	Recent Evidence on the Role of Dietary PUFAs in Cancer Development and Prevention. Current Medicinal Chemistry, 2018, 25, 1818-1836.	2.4	15
8	Anti-inflammatory Activity of Extra Virgin Olive Oil Polyphenols: Which Role in the Prevention and Treatment of Immune-Mediated Inflammatory Diseases?. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2017, 18, 36-50.	1.2	96
9	Gender-related differences in lifestyle may affect health status. Annali Dell'Istituto Superiore Di Sanita, 2016, 52, 158-66.	0.4	63
10	Protocatechuic acid activates key components of insulin signaling pathway mimicking insulin activity. Molecular Nutrition and Food Research, 2015, 59, 1472-1481.	3.3	62
11	Protocatechuic Acid Prevents oxLDL-Induced Apoptosis by Activating JNK/Nrf2 Survival Signals in Macrophages. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	4.0	28
12	Role of Protocatechuic Acid in Obesity-Related Pathologies. , 2014, , 177-189.		3
13	ï‰3-PUFAs Exert Anti-Inflammatory Activity in Visceral Adipocytes from Colorectal Cancer Patients. PLoS ONE, 2013, 8, e77432.	2.5	32
14	Role of polyphenols in cell death control. Nutritional Neuroscience, 2012, 15, 134-149.	3.1	47
15	Predominant role of obesity/insulin resistance in oxidative stress development. European Journal of Clinical Investigation, 2012, 42, 70-78.	3.4	57
16	CCAAT/enhancer-binding protein-β participates in oxidized LDL-enhanced proliferation in 3T3-L1 cells. Biochimie, 2011, 93, 1510-1519.	2.6	6
17	Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. Journal of Nutritional Biochemistry, 2011, 22, 409-417.	4.2	139
18	OxLDL induced p53-dependent apoptosis by activating p38MAPK and PKCδ signaling pathways in J774A.1 macrophage cells. Journal of Molecular Cell Biology, 2011, 3, 316-318.	3.3	17

CLAUDIO GIOVANNINI

#	Article	IF	CITATIONS
19	Cyanidin-3- <i>O</i> -β-Glucoside and Protocatechuic Acid Exert Insulin-Like Effects by Upregulating PPARγ Activity in Human Omental Adipocytes. Diabetes, 2011, 60, 2234-2244.	0.6	223
20	Extra Virgin Olive Oil Biophenols and mRNA Transcription of Glutathione-related Enzymes. , 2010, , 1095-1102.		0
21	Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases. Journal of Lipid Research, 2009, 50, 832-845.	4.2	36
22	Characterization of ¹ H NMR detectable mobile lipids in cells from human adenocarcinomas. FEBS Journal, 2009, 276, 1333-1346.	4.7	15
23	Apoptosis induced by oxidized lipids is associated with up-regulation of p66Shc in intestinal Caco-2 cells: protective effects of phenolic compounds. Journal of Nutritional Biochemistry, 2008, 19, 118-128.	4.2	38
24	Oxidised LDL upâ€regulate CD36 expression by the Nrf2 pathway in 3T3â€L1 preadipocytes. FEBS Letters, 2008, 582, 2291-2298.	2.8	43
25	Modulatory Effects of Polyphenols on Apoptosis Induction: Relevance for Cancer Prevention. International Journal of Molecular Sciences, 2008, 9, 213-228.	4.1	107
26	Tyrosol, the major extra virgin olive oil compound, restored intracellular antioxidant defences in spite of its weak antioxidative effectiveness. Nutrition, Metabolism and Cardiovascular Diseases, 2007, 17, 535-545.	2.6	127
27	Role of Glutathione in Apoptosis Induced by Radiation as Determined by1H MR Spectra of Cultured Tumor Cells. Radiation Research, 2007, 167, 268-282.	1.5	16
28	Subcellular Alterations Induced by UV-Oxidized Low-Density Lipoproteins in Epithelial Cells Can Be Counteracted by α-Tocopherol. Photochemistry and Photobiology, 2007, 71, 97-102.	2.5	0
29	Polyphenols, dietary sources and bioavailability. Annali Dell'Istituto Superiore Di Sanita, 2007, 43, 348-61.	0.4	360
30	Apoptosis in cancer and atherosclerosis: polyphenol activities. Annali Dell'Istituto Superiore Di Sanita, 2007, 43, 406-16.	0.4	25
31	Oxidised LDL modulate adipogenesis in 3T3-L1 preadipocytes by affecting the balance between cell proliferation and differentiation. FEBS Letters, 2006, 580, 2421-2429.	2.8	56
32	Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. Journal of Nutritional Biochemistry, 2005, 16, 577-586.	4.2	840
33	Extra Virgin Olive Oil Biophenols Inhibit Cell-Mediated Oxidation of LDL by Increasing the mRNA Transcription of Glutathione-Related Enzymes. Journal of Nutrition, 2004, 134, 785-791.	2.9	154
34	Sourdough Bread Made from Wheat and Nontoxic Flours and Started with Selected Lactobacilli Is Tolerated in Celiac Sprue Patients. Applied and Environmental Microbiology, 2004, 70, 1088-1096.	3.1	236
35	Clinical Evolution of Celiac Disease in Italy 1982-2002. Journal of Clinical Gastroenterology, 2004, 38, 877-879.	2.2	5
36	Wheat gliadin induces apoptosis of intestinal cells via an autocrine mechanism involving Fas-Fas ligand pathway. FEBS Letters, 2003, 540, 117-124.	2.8	61

#	Article	IF	CITATIONS
37	Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Applied and Environmental Microbiology, 2002, 68, 623-633.	3.1	256
38	Mitochondria hyperpolarization is an early event in oxidized low-density lipoprotein-induced apoptosis in Caco-2 intestinal cells. FEBS Letters, 2002, 523, 200-206.	2.8	99
39	Effects of dietary virgin olive oil phenols on low density lipoprotein oxidation in hyperlipidemic patients. Lipids, 2001, 36, 1195-1202.	1.7	62
40	Subcellular Alterations Induced by UV-Oxidized Low-Density Lipoproteins in Epithelial Cells Can Be Counteracted by α-Tocopherol. Photochemistry and Photobiology, 2000, 71, 97.	2.5	8
41	In vitro toxicity testing of alcohol-soluble proteins from diploid wheat triticum monococcum in celiac disease. Journal of Biochemical Toxicology, 1996, 11, 313-318.	0.4	27
42	Agglutinating activity of wheat gliadin peptide fractions in coeliac disease. Toxicology, 1995, 96, 29-35.	4.2	24
43	The Intestinal Mucosa of Coeliacs in Remission is Unable to Abolish the Agglutinating Activity of Gliadin Peptides on K562(S) Cells. ATLA Alternatives To Laboratory Animals, 1994, 22, 502-508.	1.0	1
44	Depression by Sodium Ions of Calcium Uptake Mediated by Non-N-Methyl-d-Aspartate Receptors in Cultured Cerebellar Neurons and Correlation with Evoked d-[3H]Aspartate Release. Journal of Neurochemistry, 1992, 58, 406-415.	3.9	13
45	Modulation of Non-N-Methyl-D-Aspartate Receptors in Cultured Cerebellar Granule Cells. Journal of Neurochemistry, 1990, 54, 1619-1625.	3.9	46
46	Expression of Excitatory Amino Acid Receptors by Cerebellar Cells of the Type-2 Astrocyte Cell Lineage. Journal of Neurochemistry, 1989, 52, 1-9.	3.9	143
47	Quisqualic Acid Modulates Kainate Responses in Cultured Cerebellar Granule Cells. Journal of Neurochemistry, 1989, 52, 10-16.	3.9	37
48	Glutamate Receptor Subtypes in Cultured Cerebellar Neurons: Modulation of Glutamate and ?-Aminobutyric Acid Release. Journal of Neurochemistry, 1987, 49, 1801-1809.	3.9	85