Hoonkyo Suh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4419873/publications.pdf

Version: 2024-02-01

331670 434195 3,559 32 21 31 h-index citations g-index papers 32 32 32 5529 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In Vivo Fate Analysis Reveals the Multipotent and Self-Renewal Capacities of Sox2+ Neural Stem Cells in the Adult Hippocampus. Cell Stem Cell, 2007, $1,515-528$.	11.1	717
2	Signaling through BMPR-IA Regulates Quiescence and Long-Term Activity of Neural Stem Cells in the Adult Hippocampus. Cell Stem Cell, 2010, 7, 78-89.	11.1	417
3	BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature, 2011, 477, 179-184.	27.8	403
4	Signaling in Adult Neurogenesis. Annual Review of Cell and Developmental Biology, 2009, 25, 253-275.	9.4	324
5	Monosynaptic inputs to new neurons in the dentate gyrus. Nature Communications, 2012, 3, 1107.	12.8	244
6	Gene Expression Profiling of Neural Stem Cells and Their Neuronal Progeny Reveals IGF2 as a Regulator of Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2012, 32, 3376-3387.	3.6	173
7	<i>Pitx2</i> is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development (Cambridge), 2002, 129, 329-337.	2.5	168
8	Role of PROP1 in Pituitary Gland Growth. Molecular Endocrinology, 2005, 19, 698-710.	3.7	163
9	The bicoid -related Pitx gene family in development. Mammalian Genome, 1999, 10, 197-200.	2.2	148
10	PITX Genes Are Required for Cell Survival and Lhx3 Activation. Molecular Endocrinology, 2005, 19, 1893-1903.	3.7	128
11	Regulation of the Rat Follicle-Stimulating Hormone \hat{l}^2 -Subunit Promoter by Activin. Molecular Endocrinology, 2003, 17, 318-332.	3.7	118
12	Role of BRCA1 in brain development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1240-8.	7.1	84
13	Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. Journal of Clinical Investigation, 2018, 129, 310-323.	8.2	69
14	The Different Roles of Glucocorticoids in the Hippocampus and Hypothalamus in Chronic Stress-Induced HPA Axis Hyperactivity. PLoS ONE, 2014, 9, e97689.	2.5	69
15	SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells. Journal of Biological Chemistry, 2012, 287, 5969-5978.	3.4	52
16	Chronic Alcohol Exposure is Associated with Decreased Neurogenesis, Aberrant Integration of Newborn Neurons, and Cognitive Dysfunction in Female Mice. Alcoholism: Clinical and Experimental Research, 2015, 39, 1967-1977.	2.4	49
17	Hippocampal TERT Regulates Spatial Memory Formation through Modulation of Neural Development. Stem Cell Reports, 2017, 9, 543-556.	4.8	34
18	Regional-specific effect of fluoxetine on rapidly dividing progenitors along the dorsoventral axis of the hippocampus. Scientific Reports, 2016, 6, 35572.	3.3	33

#	Article	IF	Citations
19	Setd5 haploinsufficiency alters neuronal network connectivity and leads to autistic-like behaviors in mice. Translational Psychiatry, 2019, 9, 24.	4.8	31
20	Growth Associated Protein 43 (GAP-43) as a Novel Target for the Diagnosis, Treatment and Prevention of Epileptogenesis. Scientific Reports, 2017, 7, 17702.	3.3	27
21	Pten loss results in inappropriate excitatory connectivity. Molecular Psychiatry, 2019, 24, 1627-1640.	7.9	26
22	Hippocampal Neurogenesis and Neural Circuit Formation in a Cuprizone-Induced Multiple Sclerosis Mouse Model. Journal of Neuroscience, 2020, 40, 447-458.	3.6	24
23	Activity of hippocampal adult-born neurons regulates alcohol withdrawal seizures. JCI Insight, 2019, 4, .	5.0	10
24	Purification and Injection of Retroviral Vectors. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086371.	0.3	9
25	Long-Term Labeling of Hippocampal Neural Stem Cells by a Lentiviral Vector. Frontiers in Molecular Neuroscience, 2018, 11, 415.	2.9	9
26	Imaging Newborn Granule Cells in Fixed Sections. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086389.	0.3	8
27	Notch keeps ependymal cells in line. Nature Neuroscience, 2009, 12, 243-245.	14.8	5
28	Preparation and Use of Retroviral Vectors for Labeling, Imaging, and Genetically Manipulating Cells. Cold Spring Harbor Protocols, 2015, 2015, pdb.top086363.	0.3	4
29	BACE1 Deficiency Causes Abnormal Neuronal Clustering in the Dentate Gyrus. Stem Cell Reports, 2017, 9, 217-230.	4.8	4
30	Role of Hippocampal Neurogenesis in Alcohol Withdrawal Seizures. Brain Plasticity, 2020, 6, 27-39.	3.5	4
31	Pituitary Gland Development. , 2002, , 499-518.		3
32	Analysis of Spine Motility of Newborn Granule Cells in Acute Brain Slices. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086397.	0.3	2