List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4419871/publications.pdf Version: 2024-02-01

SARIII KUNDU

#	Article	IF	CITATIONS
1	Cobalt-catalyzed dehydrogenative functionalization of alcohols: Progress and future prospect. Coordination Chemistry Reviews, 2022, 451, 214257.	18.8	49
2	Cobalt Catalyzed Nâ€Methylation of Amides using Methanol. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	6
3	Transition metal-catalyzed dehydrogenation of methanol and related transformations. , 2022, , 123-161.		5
4	Cyclometalated (NNC)Ru(<scp>ii</scp>) complex catalyzed β-methylation of alcohols using methanol. Dalton Transactions, 2022, 51, 4354-4365.	3.3	9
5	Reductive Alkylation of Azides and Nitroarenes with Alcohols: A Selective Route to Mono- and Dialkylated Amines. Journal of Organic Chemistry, 2022, 87, 628-643.	3.2	6
6	<i>Regio</i> -Selective C3- and N-Alkylation of Indolines in Water under Air Using Alcohols. Journal of Organic Chemistry, 2022, 87, 5603-5616.	3.2	17
7	Well-Defined Phosphine-Free Manganese(II)-Complex-Catalyzed Synthesis of Quinolines, Pyrroles, and Pyridines. Journal of Organic Chemistry, 2022, 87, 8351-8367.	3.2	23
8	Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Organic Chemistry Frontiers, 2021, 8, 2673-2709.	4.5	92
9	Alkyl Phosphine Free, Metal‣igand Cooperative Complex Catalyzed Alcohol Dehydrogenative Coupling Reactions. Asian Journal of Organic Chemistry, 2021, 10, 1218-1232.	2.7	16
10	Rhenium(I)-Catalyzed C-Methylation of Ketones, Indoles, and Arylacetonitriles Using Methanol. Journal of Organic Chemistry, 2021, 86, 6943-6951.	3.2	16
11	Utilization of caffeine carbon supported cobalt catalyst in the tandem synthesis of pyrroles from nitroarenes and alkenyl diols. Journal of Catalysis, 2021, 402, 244-254.	6.2	7
12	Direct access to 2-(N-alkylamino)pyrimidines via ruthenium catalyzed tandem multicomponent annulation/N-alkylation. Journal of Catalysis, 2021, 402, 37-51.	6.2	16
13	Cobalt-catalyzed alkylation of methyl-substituted N-heteroarenes with primary alcohols: direct access to functionalized N-heteroaromatics. Chemical Communications, 2020, 56, 249-252.	4.1	26
14	Application of a reusable Co-based nanocatalyst in alcohol dehydrogenative coupling strategy: Synthesis of quinoxaline and imine scaffolds. Catalysis Communications, 2020, 137, 105927.	3.3	26
15	Nickel-Catalyzed Direct Synthesis of Quinoxalines from 2-Nitroanilines and Vicinal Diols: Identifying Nature of the Active Catalyst. Journal of Organic Chemistry, 2020, 85, 2775-2784.	3.2	59
16	Synthesis of N-methylated amines from acyl azides using methanol. Organic and Biomolecular Chemistry, 2020, 18, 5891-5896.	2.8	6
17	Cobalt-Catalyzed Tandem Transformation of 2-Aminobenzonitriles to Quinazolinones Using Hydration and Dehydrogenative Coupling Strategy. Journal of Organic Chemistry, 2020, 85, 11359-11367.	3.2	29
18	Benzimidazole fragment containing Mn-complex catalyzed hydrosilylation of ketones and nitriles. Tetrahedron, 2020, 76, 131439.	1.9	17

#	Article	IF	CITATIONS
19	Tandem transformations and multicomponent reactions utilizing alcohols following dehydrogenation strategy. Organic and Biomolecular Chemistry, 2020, 18, 2193-2214.	2.8	53
20	Ruthenium-Catalyzed Synthesis of N-Methylated Amides using Methanol. Organic Letters, 2019, 21, 5843-5847.	4.6	23
21	Atom-Economical and Tandem Conversion of Nitriles to <i>N</i> -Methylated Amides Using Methanol and Water. ACS Catalysis, 2019, 9, 10469-10476.	11.2	37
22	Tandem Transformation of Aldoximes to Nâ€Methylated Amides Using Methanol. Advanced Synthesis and Catalysis, 2019, 361, 5357-5362.	4.3	16
23	Baseâ€Promoted αâ€Alkylation of Arylacetonitriles with Alcohols. Chemistry - an Asian Journal, 2019, 14, 2215-2219.	3.3	25
24	Cooperative Mn(<scp>i</scp>)-complex catalyzed transfer hydrogenation of ketones and imines. Dalton Transactions, 2019, 48, 7358-7366.	3.3	51
25	Cooperative iridium complex-catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in water. Green Chemistry, 2019, 21, 1999-2004.	9.0	106
26	Sustainable synthesis of N-heterocycles in water using alcohols following the double dehydrogenation strategy. Journal of Catalysis, 2019, 373, 93-102.	6.2	69
27	Tandem synthesis of quinazolinone scaffolds from 2-aminobenzonitriles using aliphatic alcohol–water system. Catalysis Science and Technology, 2019, 9, 6002-6006.	4.1	22
28	Cooperative ruthenium complex catalyzed multicomponent synthesis of pyrimidines. Dalton Transactions, 2019, 48, 17479-17487.	3.3	34
29	Direct Synthesis of N,N-Dimethylated and β-Methyl N,N-Dimethylated Amines from Nitriles Using Methanol: Experimental and Computational Studies. ACS Catalysis, 2018, 8, 2890-2896.	11.2	49
30	<i>ortho</i> -Amino group functionalized 2,2′-bipyridine based Ru(<scp>ii</scp>) complex catalysed alkylation of secondary alcohols, nitriles and amines using alcohols. Organic Chemistry Frontiers, 2018, 5, 1008-1018.	4.5	70
31	Ruthenium(II)â€NNNâ€Pincerâ€Complexâ€Catalyzed Reactions Between Various Alcohols and Amines for Sustainable Câ^'N and Câ^'C Bond Formation. Advanced Synthesis and Catalysis, 2018, 360, 722-729.	4.3	113
32	Cobalt complex catalyzed atom-economical synthesis of quinoxaline, quinoline and 2-alkylaminoquinoline derivatives. Chemical Communications, 2018, 54, 6883-6886.	4.1	104
33	Selective synthesis of mono- and di-methylated amines using methanol and sodium azide as C1 and N1 sources. Green Chemistry, 2018, 20, 3339-3345.	9.0	32
34	Counter Anion Controlled Reactivity Switch in Transfer Hydrogenation: A Case Study between Ketones and Nitroarenes. ChemistrySelect, 2017, 2, 1705-1710.	1.5	14
35	Cu (II)-β-CD as Water-Loving Catalyst for One-Pot Synthesis of Triazoles and Biofuels Intermediate at Room Temperature without Any Other Additive. ChemistrySelect, 2017, 2, 2997-3008.	1.5	10
36	Tandem Transformation of Nitro Compounds into <i>N</i> â€Methylated Amines: Greener Strategy for the Utilization of Methanol as a Methylating Agent. ChemSusChem, 2017, 10, 2370-2374.	6.8	84

#	Article	IF	CITATIONS
37	Utilization of MeOH as a C1 Building Block in Tandem Three-Component Coupling Reaction. Organic Letters, 2017, 19, 4750-4753.	4.6	82
38	Tandem Cross Coupling Reaction of Alcohols for Sustainable Synthesis of βâ€Alkylated Secondary Alcohols and Flavan Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 3888-3893.	4.3	50
39	Efficient dual acidic carbo-catalyst for one-pot conversion of carbohydrates to levulinic acid. RSC Advances, 2016, 6, 100417-100426.	3.6	11
40	A simple and efficient in situ generated ruthenium catalyst for chemoselective transfer hydrogenation of nitroarenes: kinetic and mechanistic studies and comparison with iridium systems. RSC Advances, 2016, 6, 100532-100545.	3.6	32
41	Bifunctional Ru ^{II} â€Complexâ€Catalysed Tandem Câ^'C Bond Formation: Efficient and Atom Economical Strategy for the Utilisation of Alcohols as Alkylating Agents. Chemistry - A European Journal, 2016, 22, 18147-18155.	3.3	63
42	Bifunctional Ru(<scp>ii</scp>) complex catalysed carbon–carbon bond formation: an eco-friendly hydrogen borrowing strategy. Organic and Biomolecular Chemistry, 2016, 14, 10988-10997.	2.8	50
43	Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments. Dalton Transactions, 2016, 45, 11162-11171.	3.3	58
44	Acid-Catalyzed Oxidative Addition of a C–H Bond to a Square Planar d ⁸ Iridium Complex. Journal of the American Chemical Society, 2014, 136, 8891-8894.	13.7	15
45	C–S bond activation of thioethers using (dippe)Pt(NBE)2. Polyhedron, 2013, 58, 99-105.	2.2	16
46	Cleavage of Ether, Ester, and Tosylate C(sp ³)–O Bonds by an Iridium Complex, Initiated by Oxidative Addition of C–H Bonds. Experimental and Computational Studies. Journal of the American Chemical Society, 2013, 135, 5127-5143.	13.7	71
47	Mechanism of Hydrogenolysis of an Iridium–Methyl Bond: Evidence for a Methane Complex Intermediate. Journal of the American Chemical Society, 2013, 135, 1217-1220.	13.7	33
48	Synthesis of Piperylene and Toluene via Transfer Dehydrogenation of Pentane and Pentene. ACS Catalysis, 2013, 3, 1768-1773.	11.2	25
49	Carbon–Oxygen Bond Activation in Esters by Platinum(0): Cleavage of the Less Reactive Bond. Organometallics, 2012, 31, 5018-5024.	2.3	20
50	Alkane Metathesis by Tandem Alkane-Dehydrogenation–Olefin-Metathesis Catalysis and Related Chemistry. Accounts of Chemical Research, 2012, 45, 947-958.	15.6	243
51	Predicting Selectivity in Oxidative Addition of C–S Bonds of Substituted Thiophenes to a Platinum(0) Fragment: An Experimental and Theoretical Study. Organometallics, 2011, 30, 4578-4588.	2.3	21
52	C–S Bond Activation of Thioesters Using Platinum(0). Organometallics, 2011, 30, 5147-5154.	2.3	35
53	Synthesis and Reactivity of New Ni, Pd, and Pt 2,6-Bis(di- <i>tert</i> -butylphosphinito)pyridine Pincer Complexes. Inorganic Chemistry, 2011, 50, 9443-9453.	4.0	77
54	Net Oxidative Addition of C(sp ³)-F Bonds to Iridium via Initial C-H Bond Activation. Science, 2011, 332, 1545-1548.	12.6	160

#	Article	IF	CITATIONS
55	Making M–CN bonds from M–Cl in (PONOP)M and (dippe)Ni systems (M=Ni, Pd, and Pt) using t-BuNC. Inorganica Chimica Acta, 2011, 379, 109-114.	2.4	15
56	Evaluation of Molybdenum and Tungsten Metathesis Catalysts for Homogeneous Tandem Alkane Metathesis. Organometallics, 2009, 28, 355-360.	2.3	74
57	Rational Design and Synthesis of Highly Active Pincer-Iridium Catalysts for Alkane Dehydrogenation. Organometallics, 2009, 28, 5432-5444.	2.3	127