Irene L Andrulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4419535/publications.pdf Version: 2024-02-01

		10986	10734
211	22,278	71	138
papers	citations	h-index	g-index
222	222	222	24790
all docs	docs citations	times ranked	citing authors

IDENEL ANDRILLS

#	Article	IF	CITATIONS
1	Maternal and prenatal factors and age at thelarche in the LEGACY Girls Study cohort: implications for breast cancer risk. International Journal of Epidemiology, 2023, 52, 272-283.	1.9	1
2	Breast and Prostate Cancer Risks for Male <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variant Carriers Using Polygenic Risk Scores. Journal of the National Cancer Institute, 2022, 114, 109-122.	6.3	19
3	Risks of breast and ovarian cancer for women harboring pathogenic missense variants in BRCA1 and BRCA2 compared with those harboring protein truncating variants. Genetics in Medicine, 2022, 24, 119-129.	2.4	10
4	Cancer Risks Associated With <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. Journal of Clinical Oncology, 2022, 40, 1529-1541.	1.6	90
5	Investigating the Potential of Isolating and Expanding Tumour-Infiltrating Lymphocytes from Adult Sarcoma. Cancers, 2022, 14, 548.	3.7	4
6	Rare germline copy number variants (CNVs) and breast cancer risk. Communications Biology, 2022, 5, 65.	4.4	6
7	Polygenic risk modeling for prediction of epithelial ovarian cancer risk. European Journal of Human Genetics, 2022, 30, 349-362.	2.8	23
8	Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Research, 2022, 24, 2.	5.0	15
9	Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. JAMA Oncology, 2022, 8, e216744.	7.1	51
10	Weight is More Informative than Body Mass Index for Predicting Postmenopausal Breast Cancer Risk: Prospective Family Study Cohort (ProF-SC). Cancer Prevention Research, 2022, 15, 185-191.	1.5	4
11	Genome-wide interaction analysis of menopausal hormone therapy use and breast cancer risk among 62,370 women. Scientific Reports, 2022, 12, 6199.	3.3	2
12	Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Medicine, 2022, 14, 51.	8.2	19
13	Uncovering the Contribution of Moderate-Penetrance Susceptibility Genes to Breast Cancer by Whole-Exome Sequencing and Targeted Enrichment Sequencing of Candidate Genes in Women of European Ancestry. Cancers, 2022, 14, 3363.	3.7	2
14	Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk. Journal of the National Cancer Institute, 2021, 113, 329-337.	6.3	45
15	RNA expression profiling reveals PRAME, a potential immunotherapy target, is frequently expressed in solitary fibrous tumors. Modern Pathology, 2021, 34, 951-960.	5.5	14
16	Comparing 5-Year and Lifetime Risks of Breast CancerÂusing the Prospective Family Study Cohort. Journal of the National Cancer Institute, 2021, 113, 785-791.	6.3	13
17	CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers. British Journal of Cancer, 2021, 124, 842-854.	6.4	5
18	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	12.8	19

#	Article	IF	CITATIONS
19	Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.	27.0	532
20	Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects. Npj Breast Cancer, 2021, 7, 52.	5.2	7
21	Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?. Cancers, 2021, 13, 2370.	3.7	4
22	Personalized Risk Assessment for Prevention and Early Detection of Breast Cancer: Integration and Implementation (PERSPECTIVE I&I). Journal of Personalized Medicine, 2021, 11, 511.	2.5	59
23	The predictive ability of the 313 variant–based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant. Genetics in Medicine, 2021, 23, 1726-1737.	2.4	16
24	Lineage-defined leiomyosarcoma subtypes emerge years before diagnosis and determine patient survival. Nature Communications, 2021, 12, 4496.	12.8	28
25	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	6.2	6
26	Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment. Breast Cancer Research, 2021, 23, 86.	5.0	7
27	Mendelian randomisation study of smoking exposure in relation to breast cancer risk. British Journal of Cancer, 2021, 125, 1135-1145.	6.4	9
28	Genetic insights into biological mechanisms governing human ovarian ageing. Nature, 2021, 596, 393-397.	27.8	183
29	Detection and utility of cell-free and circulating tumour DNA in bone and soft-tissue sarcomas. Bone and Joint Research, 2021, 10, 602-610.	3.6	2
30	lmmuno-transcriptomic profiling of extracranial pediatric solid malignancies. Cell Reports, 2021, 37, 110047.	6.4	26
31	Recreational Physical Activity and Outcomes After Breast Cancer in Women at High Familial Risk. JNCI Cancer Spectrum, 2021, 5, pkab090.	2.9	1
32	Association of Genomic Domains in <i>BRCA1</i> and <i>BRCA2</i> with Prostate Cancer Risk and Aggressiveness. Cancer Research, 2020, 80, 624-638.	0.9	39
33	Genetically Predicted Levels of DNA Methylation Biomarkers and Breast Cancer Risk: Data From 228 951 Women of European Descent. Journal of the National Cancer Institute, 2020, 112, 295-304.	6.3	35
34	Recreational Physical Activity Is Associated with Reduced Breast Cancer Risk in Adult Women at High Risk for Breast Cancer: A Cohort Study of Women Selected for Familial and Genetic Risk. Cancer Research, 2020, 80, 116-125.	0.9	37
35	Evaluation of associations between genetically predicted circulating protein biomarkers and breast cancer risk. International Journal of Cancer, 2020, 146, 2130-2138.	5.1	13
36	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120

#	Article	IF	CITATIONS
37	Cancer Risks Associated With Germline <i>PALB2</i> Pathogenic Variants: An International Study of 524 Families. Journal of Clinical Oncology, 2020, 38, 674-685.	1.6	270
38	Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genetics in Medicine, 2020, 22, 1653-1666.	2.4	82
39	Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk. American Journal of Human Genetics, 2020, 107, 837-848.	6.2	39
40	Association of germline variation with the survival of women with BRCA1/2 pathogenic variants and breast cancer. Npj Breast Cancer, 2020, 6, 44.	5.2	5
41	Osteosarcoma and soft-tissue sarcomas with an immune infiltrate express PD-L1: relation to clinical outcome and Th1 pathway activation. Oncolmmunology, 2020, 9, 1737385.	4.6	23
42	Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581.	21.4	265
43	Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk. Scientific Reports, 2020, 10, 9688.	3.3	2
44	Characterization of the Cancer Spectrum in Men With Germline <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. JAMA Oncology, 2020, 6, 1218.	7.1	48
45	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	1.3	32
46	Alcohol Consumption, Cigarette Smoking, and Risk of Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Results from The BRCA1 and BRCA2 Cohort Consortium. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 368-378.	2.5	24
47	A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nature Communications, 2020, 11, 312.	12.8	30
48	Risk-reducing salpingo-oophorectomy, natural menopause, and breast cancer risk: an international prospective cohort of BRCA1 and BRCA2 mutation carriers. Breast Cancer Research, 2020, 22, 8.	5.0	41
49	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	5.2	28
50	Two truncating variants in FANCC and breast cancer risk. Scientific Reports, 2019, 9, 12524.	3.3	5
51	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88
52	Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2019, 121, 180-192.	6.4	19
53	Authors' response: Associations of obesity and circulating insulin and glucose with breast cancer risk. International Journal of Epidemiology, 2019, 48, 1016-1017.	1.9	1
54	<i>BRCA1</i> and <i>BRCA2</i> pathogenic sequence variants in women of African origin or ancestry. Human Mutation, 2019, 40, 1781-1796.	2.5	26

#	Article	IF	CITATIONS
55	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	12.8	90
56	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	6.4	52
57	The association between weight at birth and breast cancer risk revisited using Mendelian randomisation. European Journal of Epidemiology, 2019, 34, 591-600.	5.7	16
58	10-year performance of four models of breast cancer risk: a validation study. Lancet Oncology, The, 2019, 20, 504-517.	10.7	116
59	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	6.2	711
60	Height and Body Mass Index as Modifiers of Breast Cancer Risk in <i>BRCA1</i> / <i>2</i> Mutation Carriers: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2019, 111, 350-364.	6.3	30
61	Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. International Journal of Epidemiology, 2019, 48, 795-806.	1.9	81
62	The <i>BRCA2</i> c.68-7TÂ>ÂA variant is not pathogenic: A model for clinical calibration of spliceogenicity. Human Mutation, 2018, 39, 729-741.	2.5	19
63	Comparison of methods to assess onset of breast development in the LEGACY Girls Study: methodological considerations for studies of breast cancer. Breast Cancer Research, 2018, 20, 33.	5.0	9
64	Identifying actionable variants using next generation sequencing in patients with a historical diagnosis of undifferentiated pleomorphic sarcoma. International Journal of Cancer, 2018, 142, 57-65.	5.1	23
65	Statistical challenges in highâ€dimensional molecular and genetic epidemiology. Canadian Journal of Statistics, 2018, 46, 24-40.	0.9	0
66	Genomeâ€wide association study identifies the <i>GLDC</i> / <i>IL33</i> locus associated with survival of osteosarcoma patients. International Journal of Cancer, 2018, 142, 1594-1601.	5.1	31
67	Age-specific breast cancer risk by body mass index and familial risk: prospective family study cohort (ProF-SC). Breast Cancer Research, 2018, 20, 132.	5.0	51
68	Assessment of PD-L1 expression across breast cancer molecular subtypes, in relation to mutation rate, <i>BRCA1</i> -like status, tumor-infiltrating immune cells and survival. Oncolmmunology, 2018, 7, e1509820.	4.6	80
69	Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science, 2018, 361, .	12.6	121
70	Genetic susceptibility markers for a breast-colorectal cancer phenotype: Exploratory results from genome-wide association studies. PLoS ONE, 2018, 13, e0196245.	2.5	9
71	A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Research, 2018, 78, 5419-5430.	0.9	54
72	Tumoral BRD4 expression in lymph node-negative breast cancer: association with T-bet+ tumor-infiltrating lymphocytes and disease-free survival. BMC Cancer, 2018, 18, 750.	2.6	13

#	Article	IF	CITATIONS
73	A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature Genetics, 2018, 50, 968-978.	21.4	184
74	Germline Variation and Breast Cancer Incidence: A Gene-Based Association Study and Whole-Genome Prediction of Early-Onset Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 1057-1064.	2.5	9
75	Breast cancer risk prediction using a polygenic risk score in the familial setting: a prospective study from the Breast Cancer Family Registry and kConFab. Genetics in Medicine, 2017, 19, 30-35.	2.4	53
76	Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers. European Journal of Human Genetics, 2017, 25, 432-438.	2.8	26
77	Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 2017, 49, 834-841.	21.4	426
78	Limited influence of germline genetic variation on all-cause mortality in women with early onset breast cancer: evidence from gene-based tests, single-marker regression, and whole-genome prediction. Breast Cancer Research and Treatment, 2017, 164, 707-717.	2.5	4
79	Risks of Breast, Ovarian, and Contralateral Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. JAMA - Journal of the American Medical Association, 2017, 317, 2402.	7.4	1,898
80	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	21.4	356
81	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	27.8	1,099
82	ldentification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
83	Non-invasive optical spectroscopic monitoring of breast development during puberty. Breast Cancer Research, 2017, 19, 12.	5.0	14
84	Pubertal development in girls by breast cancer family history: the LEGACY girls cohort. Breast Cancer Research, 2017, 19, 69.	5.0	18
85	Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3. Breast Cancer Research and Treatment, 2017, 161, 117-134.	2.5	18
86	Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genetics in Medicine, 2017, 19, 599-603.	2.4	67
87	Body mass index and breast cancer survival: a Mendelian randomization analysis. International Journal of Epidemiology, 2017, 46, 1814-1822.	1.9	45
88	Reproductive profiles and risk of breast cancer subtypes: a multi-center case-only study. Breast Cancer Research, 2017, 19, 119.	5.0	43
89	Prediction of Breast and Prostate Cancer Risks in Male <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers Using Polygenic Risk Scores. Journal of Clinical Oncology, 2017, 35, 2240-2250.	1.6	152
90	TP53-based interaction analysis identifies cis-eQTL variants for TP53BP2, FBXO28, and FAM53A that associate with survival and treatment outcome in breast cancer. Oncotarget, 2017, 8, 18381-18398.	1.8	14

#	Article	IF	CITATIONS
91	<i>PHIP</i> - a novel candidate breast cancer susceptibility locus on 6q14.1. Oncotarget, 2017, 8, 102769-102782.	1.8	9
92	Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget, 2016, 7, 80140-80163.	1.8	31
93	Genetically Predicted Body Mass Index and Breast Cancer Risk: Mendelian Randomization Analyses of Data from 145,000 Women of European Descent. PLoS Medicine, 2016, 13, e1002105.	8.4	118
94	Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS ONE, 2016, 11, e0158801.	2.5	10
95	ABRAXAS (FAM175A) and Breast Cancer Susceptibility: No Evidence of Association in the Breast Cancer Family Registry. PLoS ONE, 2016, 11, e0156820.	2.5	5
96	Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. PLoS ONE, 2016, 11, e0160316.	2.5	12
97	Fineâ€scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. International Journal of Cancer, 2016, 139, 1303-1317.	5.1	51
98	Patient survival and tumor characteristics associated with CHEK2:p.1157T – findings from the Breast Cancer Association Consortium. Breast Cancer Research, 2016, 18, 98.	5.0	39
99	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	5.0	31
100	Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Research, 2016, 18, 22.	5.0	43
101	Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry. Cancer Causes and Control, 2016, 27, 679-693.	1.8	21
102	Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2016, 18, 15.	5.0	88
103	Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science, 2016, 352, 844-849.	12.6	327
104	Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation. American Journal of Human Genetics, 2016, 99, 903-911.	6.2	59
105	The genomic landscape of epithelioid sarcoma cell lines and tumours. Journal of Pathology, 2016, 238, 63-73.	4.5	43
106	An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Human Molecular Genetics, 2016, 25, 3863-3876.	2.9	33
107	rs2735383, located at a microRNA binding site in the 3'UTR of NBS1, is not associated with breast cancer risk. Scientific Reports, 2016, 6, 36874.	3.3	2
108	Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Research, 2016, 18, 112.	5.0	42

#	Article	IF	CITATIONS
109	Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	12.8	93
110	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
111	Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Scientific Reports, 2016, 6, 32512.	3.3	19
112	Integrative analyses reveal signaling pathways underlying familial breast cancer susceptibility. Molecular Systems Biology, 2016, 12, 860.	7.2	14
113	Age- and Tumor Subtype–Specific Breast Cancer Risk Estimates for <i>CHEK2</i> *1100delC Carriers. Journal of Clinical Oncology, 2016, 34, 2750-2760.	1.6	152
114	Cohort Profile: The Breast Cancer Prospective Family Study Cohort (ProF-SC). International Journal of Epidemiology, 2016, 45, 683-692.	1.9	48
115	Validation of Intratumoral T-bet+ Lymphoid Cells as Predictors of Disease-Free Survival in Breast Cancer. Cancer Immunology Research, 2016, 4, 41-48.	3.4	25
116	Combined genetic and splicing analysis of BRCA1 c.[594-2A>C; 641A>G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms. Human Molecular Genetics, 2016, 25, 2256-2268.	2.9	106
117	No evidence that protein truncating variants in <i>BRIP1</i> are associated with breast cancer risk: implications for gene panel testing. Journal of Medical Genetics, 2016, 53, 298-309.	3.2	94
118	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	21.4	125
119	Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium. Human Genetics, 2016, 135, 137-154.	3.8	8
120	BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. Journal of the National Cancer Institute, 2016, 108, djv315.	6.3	77
121	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18
122	RAD51B in Familial Breast Cancer. PLoS ONE, 2016, 11, e0153788.	2.5	26
123	Gene-expression patterns in peripheral blood classify familial breast cancer susceptibility. BMC Medical Genomics, 2015, 8, 72.	1.5	13
124	An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research, 2015, 17, 61.	5.0	26
125	Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Research, 2015, 17, 58.	5.0	26
126	A comprehensive evaluation of interaction between genetic variants and use of menopausal hormone therapy on mammographic density. Breast Cancer Research, 2015, 17, 110.	5.0	19

#	Article	IF	CITATIONS
127	Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types. Journal of the National Cancer Institute, 2015, 107, djv279.	6.3	152
128	Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers. PLoS ONE, 2015, 10, e0120020.	2.5	34
129	Atypical Protein Kinase C Zeta: Potential Player in Cell Survival and Cell Migration of Ovarian Cancer. PLoS ONE, 2015, 10, e0123528.	2.5	19
130	SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival. Oncotarget, 2015, 6, 37979-37994.	1.8	20
131	Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants. Journal of the National Cancer Institute, 2015, 107, .	6.3	428
132	Psychosocial Adjustment in School-age Girls With a Family History of Breast Cancer. Pediatrics, 2015, 136, 927-937.	2.1	13
133	Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Human Molecular Genetics, 2015, 24, 2966-2984.	2.9	40
134	Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1. American Journal of Human Genetics, 2015, 96, 5-20.	6.2	76
135	A high-resolution copy-number variation resource for clinical and population genetics. Genetics in Medicine, 2015, 17, 747-752.	2.4	73
136	Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer. Carcinogenesis, 2015, 36, 256-271.	2.8	14
137	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	21.4	221
138	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	21.4	513
139	Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Human Molecular Genetics, 2015, 24, 5356-5366.	2.9	128
140	Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression. American Journal of Human Genetics, 2015, 97, 22-34.	6.2	37
141	A Genome-Wide Scan Identifies Variants in <i>NFIB</i> Associated with Metastasis in Patients with Osteosarcoma. Cancer Discovery, 2015, 5, 920-931.	9.4	88
142	Identification of Novel Genetic Markers of Breast Cancer Survival. Journal of the National Cancer Institute, 2015, 107, .	6.3	56
143	Germline TP53 Variants and Susceptibility to Osteosarcoma. Journal of the National Cancer Institute, 2015, 107, .	6.3	109
144	Novel Associations between Common Breast Cancer Susceptibility Variants and Risk-Predicting Mammographic Density Measures. Cancer Research, 2015, 75, 2457-2467.	0.9	55

#	Article	IF	CITATIONS
145	Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nature Genetics, 2015, 47, 1294-1303.	21.4	357
146	Menacalc, a quantitative method of metastasis assessment, as a prognostic marker for axillary node-negative breast cancer. BMC Cancer, 2015, 15, 483.	2.6	27
147	Height and Breast Cancer Risk: Evidence From Prospective Studies and Mendelian Randomization. Journal of the National Cancer Institute, 2015, 107, djv219.	6.3	99
148	Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1680-1691.	2.5	24
149	Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Human Molecular Genetics, 2015, 24, 285-298.	2.9	38
150	Candidate Genetic Modifiers for Breast and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 308-316.	2.5	22
151	The SNP rs6500843 in 16p13.3 is associated with survival specifically among chemotherapy-treated breast cancer patients. Oncotarget, 2015, 6, 7390-7407.	1.8	15
152	MicroRNA Related Polymorphisms and Breast Cancer Risk. PLoS ONE, 2014, 9, e109973.	2.5	49
153	Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast. PLoS Genetics, 2014, 10, e1004285.	3.5	39
154	2q36.3 is associated with prognosis for oestrogen receptor-negative breast cancer patients treated with chemotherapy. Nature Communications, 2014, 5, 4051.	12.8	16
155	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	2.9	90
156	Correlation of DNA methylation levels in blood and saliva DNA in young girls of the LEGACY Girls study. Epigenetics, 2014, 9, 929-933.	2.7	32
157	Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2014, 23, 6096-6111.	2.9	53
158	Refined histopathological predictors of BRCA1 and BRCA2mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Research, 2014, 16, 3419.	5.0	97
159	Aberrant Hedgehog Signaling and Clinical Outcome in Osteosarcoma. Sarcoma, 2014, 2014, 1-9.	1.3	32
160	Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research, 2014, 16, 3416.	5.0	57
161	Does perceived risk predict breast cancer screening use? Findings from a prospective cohort study of female relatives from the Ontario site of the Breast Cancer Family Registry. Breast, 2014, 23, 482-488.	2.2	10
162	Distinguishing luminal breast cancer subtypes by Ki67, progesterone receptor or TP53 status provides prognostic information. Modern Pathology, 2014, 27, 554-561.	5.5	66

#	Article	IF	CITATIONS
163	Involvement and targeted intervention of dysregulated Hedgehog signaling in osteosarcoma. Cancer, 2014, 120, 537-547.	4.1	43
164	Rare Mutations in <i>RINT1</i> Predispose Carriers to Breast and Lynch Syndrome–Spectrum Cancers. Cancer Discovery, 2014, 4, 804-815.	9.4	44
165	Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 2014, 514, 92-97.	27.8	548
166	Breast-Cancer Risk in Families with Mutations in <i>PALB2</i> . New England Journal of Medicine, 2014, 371, 497-506.	27.0	745
167	Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nature Communications, 2014, 5, 4999.	12.8	105
168	Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study. Breast Cancer Research, 2014, 16, R51.	5.0	14
169	Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1. American Journal of Human Genetics, 2013, 93, 1046-1060.	6.2	98
170	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
171	Elevated expression of podocalyxin is associated with lymphatic invasion, basal-like phenotype, and clinical outcome in axillary lymph node-negative breast cancer. Breast Cancer Research and Treatment, 2013, 137, 709-719.	2.5	30
172	Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers. American Journal of Human Genetics, 2013, 92, 489-503.	6.2	201
173	Genome-wide association studies identify four ER negative–specific breast cancer risk loci. Nature Genetics, 2013, 45, 392-398.	21.4	374
174	Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 45, 353-361.	21.4	960
175	Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk. PLoS Genetics, 2013, 9, e1003173.	3.5	105
176	Protein Kinase C Epsilon and Genetic Networks in Osteosarcoma Metastasis. Cancers, 2013, 5, 372-403.	3.7	4
177	Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.	3.5	244
178	Tumoral Lymphocytic Infiltration and Expression of the Chemokine CXCL10 in Breast Cancers from the Ontario Familial Breast Cancer Registry. Clinical Cancer Research, 2013, 19, 336-346.	7.0	113
179	Common Variants at the 19p13.1 and <i>ZNF365</i> Loci Are Associated with ER Subtypes of Breast Cancer and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 645-657.	2.5	47
180	Pathology of Breast and Ovarian Cancers among <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Results from the Consortium of Investigators of Modifiers of <i>BRCA1</i> / <i>2</i> (CIMBA). Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 134-147.	2.5	513

#	Article	IF	CITATIONS
181	Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nature Genetics, 2012, 44, 312-318.	21.4	256
182	Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2mutation carriers. Breast Cancer Research, 2012, 14, R33.	5.0	78
183	Ovarian cancer susceptibility alleles and risk of ovarian cancer in <i>BRCA1</i> and <i>BRCA2</i> mutation carriers. Human Mutation, 2012, 33, 690-702.	2.5	34
184	Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2011, 20, 3304-3321.	2.9	68
185	Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute, 2011, 103, 105-116.	6.3	40
186	Past recreational physical activity, body size, and all-cause mortality following breast cancer diagnosis: results from the breast cancer family registry. Breast Cancer Research and Treatment, 2010, 123, 531-542.	2.5	50
187	Characterization of the 12q15 <i>MDM2</i> and 12q13â€14 <i>CDK4</i> amplicons and clinical correlations in osteosarcoma. Genes Chromosomes and Cancer, 2010, 49, 518-525.	2.8	93
188	A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population. Nature Genetics, 2010, 42, 885-892.	21.4	309
189	Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Implications for Risk Prediction. Cancer Research, 2010, 70, 9742-9754.	0.9	169
190	Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2009, 18, 4442-4456.	2.9	99
191	JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. Breast Cancer Research and Treatment, 2008, 111, 439-448.	2.5	138
192	Common Breast Cancer-Predisposition Alleles Are Associated with Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. American Journal of Human Genetics, 2008, 82, 937-948.	6.2	257
193	Prognostic Effect of Basal-Like Breast Cancers Is Time Dependent: Evidence from Tissue Microarray Studies on a Lymph Node–Negative Cohort. Clinical Cancer Research, 2008, 14, 4168-4174.	7.0	37
194	RAD51 135G→C Modifies Breast Cancer Risk among BRCA2 Mutation Carriers: Results from a Combined Analysis of 19 Studies. American Journal of Human Genetics, 2007, 81, 1186-1200.	6.2	217
195	The Combination of p53 Mutation and neu/erbB-2 Amplification Is Associated With Poor Survival in Node-Negative Breast Cancer. Journal of Clinical Oncology, 2004, 22, 86-96.	1.6	90
196	The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Research, 2004, 6, R375-89.	5.0	255
197	Cloning and mutation analysis of ZFP276 as a candidate tumor suppressor in breast cancer. Journal of Human Genetics, 2003, 48, 668-671.	2.3	11
198	Comparison of DNA- and RNA-Based Methods for Detection of TruncatingBRCA1 Mutations. Human Mutation, 2002, 20, 65-73.	2.5	74

#	Article	IF	CITATIONS
199	Mutational analysis of BRCA1 and BRCA2 genes in Chinese ovarian cancer identifies 6 novel germline mutations. Human Mutation, 2000, 16, 88-89.	2.5	36
200	Perceptions of Ashkenazi Jewish breast cancer patients on genetic testing for mutations in BRCA1 and BRCA2. Clinical Genetics, 2000, 57, 376-383.	2.0	42
201	Factors Affecting Distant Disease-Free Survival for Primary Invasive Breast Cancer: Use of a Log-Normal Survival Model. Annals of Surgical Oncology, 2000, 7, 416-426.	1.5	51
202	MDR1 Gene Expression and Outcome in Osteosarcoma: A Prospective, Multicenter Study. Journal of Clinical Oncology, 2000, 18, 2685-2694.	1.6	80
203	Breast Carcinomas Arising in Carriers of Mutations in BRCA1 or BRCA2: Are They Prognostically Different?. Journal of Clinical Oncology, 1999, 17, 3653-3663.	1.6	92
204	Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene, 1999, 18, 783-788.	5.9	146
205	Mutation in the coding region of theBRCA1 gene leads to aberrant splicing of the transcript. Human Mutation, 1999, 14, 540-541.	2.5	13
206	Preferential allelic expression can lead to reduced expression ofBRCA1 in sporadic breast cancers. , 1998, 77, 1-6.		46
207	Expression of insulin-like growth factor receptor, IGF-1, and IGF-2 in primary and metastatic osteosarcoma. Journal of Surgical Oncology, 1998, 69, 21-27.	1.7	94
208	Expression of insulin-like growth factor receptor, IGF-1, and IGF-2 in primary and metastatic osteosarcoma. , 1998, 69, 21.		2
209	Germline BRCA2 6174delT mutations in Ashkenazi Jewish pancreatic cancer patients. Nature Genetics, 1997, 16, 17-18.	21.4	205
210	Expression of the multidrug resistance gene in osteosarcoma: A pilot study. Journal of Orthopaedic Research, 1993, 11, 396-403.	2.3	29
211	CD10 and CD44 genes of leukemic cells and malignant cell lines show no evidence of transformation-related alterations. Journal of Cellular Physiology, 1991, 148, 414-420.	4.1	9