
Thomas E Finger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/441953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taste Bud Connectome: Implications for Taste Information Processing. Journal of Neuroscience, 2022, 42, 804-816.	3.6	17
2	Cellular diversity and regeneration in taste buds. Current Opinion in Physiology, 2021, 20, 146-153.	1.8	22
3	Purinergic neurotransmission in the gustatory system. Autonomic Neuroscience: Basic and Clinical, 2021, 236, 102874.	2.8	4
4	Chemical receptors of the arytenoid: A comparison of human and mouse. Laryngoscope, 2020, 130, 423-430.	2.0	15
5	Threeâ€dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. Cell types and the apical region of the taste bud. Journal of Comparative Neurology, 2020, 528, 756-771.	1.6	49
6	Genetic Deletion of TrpV1 and TrpA1 Does Not Alter Avoidance of or Patterns of Brainstem Activation to Citric Acid in Mice. Chemical Senses, 2020, 45, 573-579.	2.0	3
7	Sugar causes obesity and metabolic syndrome in mice independently of sweet taste. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E276-E290.	3.5	15
8	A Subset of Olfactory Sensory Neurons Express Forkhead Box J1-Driven eGFP. Chemical Senses, 2019, 44, 663-671.	2.0	4
9	Behavioral evolution contributes to hindbrain diversification among Lake Malawi cichlid fish. Scientific Reports, 2019, 9, 19994.	3.3	10
10	Recent advances in taste transduction and signaling. F1000Research, 2019, 8, 2117.	1.6	56
11	Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Science Signaling, 2018, 11, .	3.6	69
12	Immunocytochemical organization and sour taste activation in the rostral nucleus of the solitary tract of mice. Journal of Comparative Neurology, 2017, 525, 271-290.	1.6	15
13	5HTR3Aâ€driven GFP labels immature olfactory sensory neurons. Journal of Comparative Neurology, 2017, 525, 1743-1755.	1.6	10
14	5â€HT _{3A} â€driven green fluorescent protein delineates gustatory fibers innervating sourâ€responsive taste cells: A labeled line for sour taste?. Journal of Comparative Neurology, 2017, 525, 2358-2375.	1.6	20
15	Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice. Chemical Senses, 2017, 42, 759-767.	2.0	22
16	Sonic Hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance. Development (Cambridge), 2017, 144, 3054-3065.	2.5	48
17	The Role of 5-HT ₃ Receptors in Signaling from Taste Buds to Nerves. Journal of Neuroscience, 2015, 35, 15984-15995.	3.6	55
18	Immunohistochemical Analysis of Human Vallate Taste Buds. Chemical Senses, 2015, 40, 655-660.	2.0	13

#	Article	IF	CITATIONS
19	Postsynaptic P2X3â€containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice. Journal of Physiology, 2015, 593, 1113-1125.	2.9	74
20	Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6075-6080.	7.1	170
21	Differential localization of NTâ€3 and TrpM5 in glomeruli of the olfactory bulb of mice. Journal of Comparative Neurology, 2014, 522, 1929-1940.	1.6	6
22	Na _V 1.5 sodium channel window currents contribute to spontaneous firing in olfactory sensory neurons. Journal of Neurophysiology, 2014, 112, 1091-1104.	1.8	21
23	Chemosensors in the Nose: Guardians of the Airways. Physiology, 2013, 28, 51-60.	3.1	61
24	Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors. Open Biology, 2013, 3, 130015.	3.6	28
25	Chemosensory Brush Cells of the Trachea. A Stable Population in a Dynamic Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 190-196.	2.9	57
26	Role of the ectonucleotidase NTPDase2 in taste bud function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14789-14794.	7.1	90
27	A taste for ATP: neurotransmission in taste buds. Frontiers in Cellular Neuroscience, 2013, 7, 264.	3.7	73
28	Reactive microglia after taste nerve injury: comparison to nerve injury models of chronic pain. F1000Research, 2013, 2, 65.	1.6	13
29	Taste without calories is insufficient to drive conditioned flavor preferences. FASEB Journal, 2013, 27, 1123.9.	0.5	1
30	Residual Chemoresponsiveness to Acids in the Superior Laryngeal Nerve in "Taste-Blind" (P2X2/P2X3) Tj ETQq0 C) 0 rgBT /C)veglock 10 Tf
31	A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds. PLoS ONE, 2012, 7, e30032.	2.5	24
32	Secondâ€order input to the medial amygdala from olfactory sensory neurons expressing the transduction channel TRPM5. Journal of Comparative Neurology, 2012, 520, 1819-1830.	1.6	38
33	Knocking Out P2X Receptors Reduces Transmitter Secretion in Taste Buds. Journal of Neuroscience, 2011, 31, 13654-13661.	3.6	52
34	Taste isn't just for taste buds anymore. F1000 Biology Reports, 2011, 3, 20.	4.0	100
35	A transgenic mouse model reveals fast nicotinic transmission in hippocampal pyramidal neurons. European Journal of Neuroscience, 2011, 33, 1786-1798.	2.6	45
36	Expression of taste receptors in Solitary Chemosensory Cells of rodent airways. BMC Pulmonary Medicine, 2011, 11, 3.	2.0	198

#	Article	IF	CITATIONS
37	Central Representation of Postingestive Chemosensory Cues in Mice That Lack the Ability to Taste. Journal of Neuroscience, 2011, 31, 9101-9110.	3.6	35
38	Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3210-3215.	7.1	349
39	Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647. Chemical Senses, 2009, 34, 789-797.	2.0	44
40	Residual Chemosensory Capabilities in Double P2X2/P2X3 Purinergic Receptor Null Mice: Intraoral or Postingestive Detection?. Chemical Senses, 2009, 34, 799-808.	2.0	25
41	Evolution of gustatory reflex systems in the brainstems of fishes. Integrative Zoology, 2009, 4, 53-63.	2.6	24
42	Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish: Cellular organization and neurotransmitters. Journal of Comparative Neurology, 2009, 516, 213-225.	1.6	15
43	The Anatomical and Electrophysiological Basis of Peripheral Nasal Trigeminal Chemoreception. Annals of the New York Academy of Sciences, 2009, 1170, 202-205.	3.8	54
44	Preface. Annals of the New York Academy of Sciences, 2009, 1170, 1-4.	3.8	2
45	Disorganized olfactory bulb lamination in mice deficient for transcription factor AP-2É›. Molecular and Cellular Neurosciences, 2009, 42, 161-171.	2.2	37
46	Group III Metabotropic Glutamate Receptors (mGluRs) Modulate Transmission of Gustatory Inputs in the Brain Stem. Journal of Neurophysiology, 2009, 102, 192-202.	1.8	6
47	Sorting food from stones: the vagal taste system in Goldfish, Carassius auratus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 135-143.	1.6	66
48	Calciumâ€fluxing glutamate receptors associated with primary gustatory afferent terminals in goldfish (<i>Carassius auratus</i>). Journal of Comparative Neurology, 2008, 506, 694-707.	1.6	8
49	Solitary chemoreceptor cell survival is independent of intact trigeminal innervation. Journal of Comparative Neurology, 2008, 508, 62-71.	1.6	35
50	Expression of Galpha14 in sweet-transducing taste cells of the posterior tongue. BMC Neuroscience, 2008, 9, 110.	1.9	74
51	Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice. BMC Neuroscience, 2008, 9, 115.	1.9	63
52	The Candidate Sour Taste Receptor, PKD2L1, Is Expressed by Type III Taste Cells in the Mouse. Chemical Senses, 2008, 33, 243-254.	2.0	174
53	TRPM5-Expressing Solitary Chemosensory Cells Respond to Odorous Irritants. Journal of Neurophysiology, 2008, 99, 1451-1460.	1.8	129
54	Nasal Solitary Chemoreceptor Cell Responses to Bitter and Trigeminal Stimulants In Vitro. Journal of Neurophysiology, 2008, 99, 2929-2937.	1.8	114

#	Article	IF	CITATIONS
55	Expression of T1Rs and Gustducin in Palatal Taste Buds of Mice. Chemical Senses, 2007, 32, 255-262.	2.0	44
56	Editor's remarks: Chemotopic odorant coding in a mammalian olfactory system, Johnson et al., J Comp Neurol 503:1–34. Journal of Comparative Neurology, 2007, 503, i-ii.	1.6	0
57	Glutamic acid decarboxylase 65, 67, and GABA-transaminase mRNA expression and total enzyme activity in the goldfish (Carassius auratus) brain. Brain Research, 2007, 1147, 154-166.	2.2	33
58	Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. Journal of Comparative Neurology, 2006, 497, 1-12.	1.6	245
59	Co-occurrence of calcium-binding proteins and calcium-permeable glutamate receptors in the primary gustatory nucleus of goldfish. Journal of Comparative Neurology, 2006, 499, 90-105.	1.6	24
60	Differential distribution of hypocretin (orexin) and melanin oncentrating hormone in the goldfish brain. Journal of Comparative Neurology, 2005, 488, 476-491.	1.6	89
61	Effects of glossopharyngeal nerve section on the expression of neurotrophins and their receptors in lingual taste buds of adult mice. Journal of Comparative Neurology, 2005, 490, 371-390.	1.6	36
62	Solitary chemoreceptor cell proliferation in adult nasal epithelium. Journal of Neurocytology, 2005, 34, 117-122.	1.5	23
63	ATP Signaling Is Crucial for Communication from Taste Buds to Gustatory Nerves. Science, 2005, 310, 1495-1499.	12.6	682
64	Olfactory Receptor Neurons in Fish: Structural, Molecular and Functional Correlates. Chemical Senses, 2005, 30, i311-i311.	2.0	15
65	Beyond the olfactory bulb: An odotopic map in the forebrain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18688-18693.	7.1	76
66	Cell Types and Lineages in Taste Buds. Chemical Senses, 2005, 30, i54-i55.	2.0	76
67	Differential distribution of olfactory receptor neurons in goldfish: Structural and molecular correlates. Journal of Comparative Neurology, 2004, 477, 347-359.	1.6	175
68	Brainâ€derived neurotrophic factor is present in adult mouse taste cells with synapses. Journal of Comparative Neurology, 2003, 459, 15-24.	1.6	82
69	Neurotrophin-3 is expressed in a discrete subset of olfactory receptor neurons in the mouse. Journal of Comparative Neurology, 2003, 463, 221-235.	1.6	17
70	Disruption of sonic hedgehog signaling alters growth and patterning of lingual taste papillae. Developmental Biology, 2003, 255, 263-277.	2.0	122
71	Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8981-8986.	7.1	388
72	Correlation between Olfactory Receptor Cell Type and Function in the Channel Catfish. Journal of Neuroscience, 2003, 23, 9328-9339.	3.6	236

#	Article	IF	CITATIONS
73	Analysis of Cell Lineage Relationships in Taste Buds. Journal of Neuroscience, 2002, 22, 4522-4529.	3.6	85
74	GABAergic modulation of primary gustatory afferent synaptic efficacy. Journal of Neurobiology, 2002, 52, 133-143.	3.6	15
75	Trigeminal collaterals in the nasal epithelium and olfactory bulb: A potential route for direct modulation of olfactory information by trigeminal stimuli. Journal of Comparative Neurology, 2002, 444, 221-226.	1.6	177
76	Distribution of cholecystokinin, calcitonin gene-related peptide, neuropeptide Y, and galanin in the primary gustatory nuclei of the goldfish. Journal of Comparative Neurology, 2002, 450, 103-114.	1.6	17
77	Kainate-activated cobalt uptake in the primary gustatory nucleus in goldfish: Visualization of the morphology and distribution of cells expressing AMPA/kainate receptors in the vagal lobe. Journal of Comparative Neurology, 2001, 431, 59-74.	1.6	10
78	Variability of position of the P2 glomerulus within a map of the mouse olfactory bulb. Journal of Comparative Neurology, 2001, 436, 351-362.	1.6	103
79	"Type Ill―cells of rat taste buds: Immunohistochemical and ultrastructural studies of neuronâ€specific enolase, protein gene product 9.5, and serotonin. Journal of Comparative Neurology, 2001, 440, 97-108.	1.6	234
80	Morphology and physiology of the polyaxonal amacrine cells in the rabbit retina. Journal of Comparative Neurology, 2001, 440, 109-125.	1.6	76
81	Maintenance of Rat Taste Buds in Primary Culture. Chemical Senses, 2001, 26, 861-873.	2.0	24
82	Variability of position of the P2 glomerulus within a map of the mouse olfactory bulb. Journal of Comparative Neurology, 2001, 436, 351-362.	1.6	2
83	Variability of position of the P2 glomerulus within a map of the mouse olfactory bulb. Journal of Comparative Neurology, 2001, 436, 351-62.	1.6	47
84	Ascending spinal systems in the fish,Prionotus carolinus. , 2000, 422, 106-122.		43
85	Mature olfactory receptor neurons express connexin 43. Journal of Comparative Neurology, 2000, 426, 1-12.	1.6	40
86	Phyletic Distribution of Crypt-Type Olfactory Receptor Neurons in Fishes. Brain, Behavior and Evolution, 2000, 55, 100-110.	1.7	123
87	Distribution of trigeminal fibers in the primary facial gustatory center of channel catfish, Ictalurus punctatus. Brain Research, 1999, 841, 93-100.	2.2	14
88	Epithelial Na+ channel subunits in rat taste cells: Localization and regulation by aldosterone. Journal of Comparative Neurology, 1999, 405, 406-420.	1.6	180
89	Expression ofSonic hedgehog,Patched, andGli1 in developing taste papillae of the mouse. , 1999, 406, 143-155.		106
90	The Arginine Taste Receptor: Physiology, Biochemistry, and Immunohistochemistrya. Annals of the New York Academy of Sciences, 1998, 855, 134-142.	3.8	7

0

#	Article	IF	CITATIONS
91	Excitatory Amino Acid Neurotransmission in the Primary Gustatory Nucleus of the Goldfish Carassius auratus. Annals of the New York Academy of Sciences, 1998, 855, 442-449.	3.8	12
92	Differential projections of ciliated and microvillous olfactory receptor cells in the catfish,Ictalurus punctatus. , 1998, 398, 539-550.		78
93	NMDA and non-NMDA Receptors Mediate Responses in the Primary Gustatory Nucleus in Goldfish. Chemical Senses, 1998, 24, 37-46.	2.0	23
94	Evolution of Taste and Solitary Chemoreceptor Cell Systems. Brain, Behavior and Evolution, 1997, 50, 234-243.	1.7	103
95	Parallel Medullary Gustatospinal Pathways In a Catfish: Possible Neural Substrates for Taste-Mediated Food Search. Journal of Neuroscience, 1997, 17, 4873-4885.	3.6	19
96	Feeding patterns and brain evolution in ostariophysean fishes. Acta Physiologica Scandinavica Supplementum, 1997, 638, 59-66.	1.0	5
97	Axonal projection patterns of neurons in the secondary gustatory nucleus of channel catfish. Journal of Comparative Neurology, 1996, 365, 585-593.	1.6	15
98	Secondary connections of the dorsal and ventral facial lobes in a teleost fish, the rockling (Ciliata) Tj ETQq0 0 0 i	rgBT /Over	lock_10 Tf 50
99	Visceral afferent and efferent columns in the spinal cord of the teleost,Ictalurus punctatus. , 1996, 371, 437-447.		13
100	Differential localization of putative amino acid receptors in taste buds of the channel catfish,Ictalurus punctatus. , 1996, 373, 129-138.		38
101	Taste receptor cells arise from local epithelium, not neurogenic ectoderm Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1916-1920.	7.1	176
102	Gustatory control of feeding behavior in goldfish. Physiology and Behavior, 1995, 57, 483-488.	2.1	71
103	Differential distribution of the synapsins in the rat olfactory bulb. Journal of Neuroscience, 1994, 14, 301-309.	3.6	35
104	INTRODUCTION: Cell lineage analysis in chemosensory research. Chemical Senses, 1994, 19, 669-670.	2.0	0
105	Expression of GAP43 mRNA in normally developing and transplanted neurons from the rat ventral mesencephalon. Journal of Comparative Neurology, 1994, 347, 470-480.	1.6	10
106	Mosaic analysis of the embryonic origin of taste buds. Chemical Senses, 1994, 19, 725-735.	2.0	10
107	Sorting Food from Mud: Vagal Gustatory System of Goldfish (Carassius auratus). , 1994, , 739-742.		2

Nasal Trigeminal Chemoreceptors May Have Affector and Effector Functions. , 1994, , 322-322.

#	Article	IF	CITATIONS
109	Spinal and facial innervation of the skin in the gadid fishCiliata mustela (Teleostei). Journal of Comparative Neurology, 1993, 331, 407-417.	1.6	40
110	Peripheral peptidergic fibers of the trigeminal nerve in the olfactory bulb of the rat. Journal of Comparative Neurology, 1993, 334, 117-124.	1.6	54
111	Immunolocalization of different forms of neural cell adhesion molecule (NCAM) in rat taste buds. Journal of Comparative Neurology, 1993, 336, 507-516.	1.6	88
112	GABAergic innervation of the Mauthner cell and other reticulospinal neurons in the goldfish. Journal of Comparative Neurology, 1993, 338, 601-611.	1.6	21
113	On the Advantage of Using Semiultrathin(0.2 μm)Plastic Sections for Electron Microscopic Neuropathology. Neuropathology, 1993, 13, 39-50.	1.2	3
114	What's so Special about Special Visceral?. Cells Tissues Organs, 1993, 148, 132-138.	2.3	10
115	Expression of the dopaminergic phenotype in the olfactory bulb: Neither calcitonin gene-related peptide nor olfactory input is necessary. Neuroscience Letters, 1992, 143, 15-18.	2.1	7
116	Central representation and projections of gustatory systems. , 1992, , 79-102.		29
117	Evoked responses from an in vitro slice preparation of a primary gustatory nucleus: the vagal lobe of goldfish. Brain Research, 1992, 580, 27-34.	2.2	10
118	Functional organization of vagal reflex systems in the brain stem of the goldfish,Carassius auratus. Journal of Comparative Neurology, 1992, 319, 463-478.	1.6	36
119	Ascending general visceral pathways within the brainstems of two teleost fishes: <i>Ictalurus punctatus</i> and <i>Carassius auratus</i> . Journal of Comparative Neurology, 1992, 320, 509-520.	1.6	51
120	GAP-43 and 5B4-CAM immunoreactivity during the development of transplanted fetal mesencephalic neurons. Experimental Neurology, 1991, 114, 1-10.	4.1	10
121	The effects of neonatal capsaicin administration on trigeminal nerve chemoreceptors in the rat nasal cavity. Brain Research, 1991, 561, 212-216.	2.2	46
122	Postlarval growth of the peripheral gustatory system in the channel catfish,Ictalurus punctatus. Journal of Comparative Neurology, 1991, 314, 55-66.	1.6	35
123	Changed distribution of sodium channels along demyelinated axons Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6777-6780.	7.1	97
124	Synapsin I-like immunoreactivity in nerve fibers associated with lingual taste buds of the rat. Journal of Comparative Neurology, 1990, 292, 283-290.	1.6	38
125	Ultrastructure of substance P- and CCRP-immunoreactive nerve fibers in the nasal epithelium of rodents. Journal of Comparative Neurology, 1990, 294, 293-305.	1.6	121
126	Transcellular labeling of taste bud cells by carbocyanine dye (dil) applied to peripheral nerves in the barbels of the catfish,Ictalurus punctatus. Journal of Comparative Neurology, 1990, 302, 884-892.	1.6	30

#	Article	IF	CITATIONS
127	Synodontid Catfish: A New Group of Weakly Electric Fish. Brain, Behavior and Evolution, 1990, 35, 268-277.	1.7	55
128	Human fetal mesencephalic tissue grafted to dopamine-denervated striatum of athymic rats: light- and electron-microscopical histochemistry and in vivo chronoamperometric studies. Journal of Neuroscience, 1989, 9, 614-624.	3.6	64
129	Accessibility of colloidal gold and horseradish peroxidase to cytosolic spaces in <i>Limulus</i> ventral photoreceptors. Visual Neuroscience, 1989, 2, 89-96.	1.0	10
130	Peptidergic regulation of secretory activity in amphibian olfactory mucosa: Immunohistochemistry, neural stimulation, and pharmacology. Cell and Tissue Research, 1989, 256, 381-9.	2.9	27
131	Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology. Journal of Comparative Neurology, 1989, 286, 391-407.	1.6	93
132	Human ventral mesencephalic xenografts to the catecholamine-depleted striata of athymic rats: Ultrastructure and immunocytochemistry. Synapse, 1989, 4, 19-29.	1.2	10
133	Abnormal expression of tyrosine hydroxylase-like immunoreactivity in intraocular transplants of rat caudate nucleus. Neuroscience Letters, 1989, 96, 253-258.	2.1	10
134	Forebrain connections of the gustatory system in ictalurid catfishes. Journal of Comparative Neurology, 1988, 278, 353-376.	1.6	63
135	Sensorimotor Mapping and Oropharyngeal Reflexes in Goldfish, <i>Carassius auratus</i> . Brain, Behavior and Evolution, 1988, 31, 17-24.	1.7	49
136	Intracerebral xenografts of human mesencephalic tissue into athymic rats: immunochemical and in vivo electrochemical studies Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8331-8334.	7.1	29
137	Organization of Chemosensory Systems Within the Brains of Bony Fishes. , 1988, , 339-363.		30
138	Immunoreactivity to Neuronal Growth-Dependent Membrane Glycoprotein Occurs in a Subset of Taste Receptor Cells in Rat Taste Buds. Annals of the New York Academy of Sciences, 1987, 510, 284-286.	3.8	4
139	Monoclonal Antibodies Directed against Catfish Taste Receptors Annals of the New York Academy of Sciences, 1987, 510, 732-734.	3.8	1
140	Area postrema of the goldfish,Carassius auratus: Ultrastructure, fiber connections, and immunocytochemistry. Journal of Comparative Neurology, 1987, 256, 104-116.	1.6	49
141	Topographic representation of the sensory and motor roots of the vagus nerve in the medulla of goldfish, <i>Carassius auratus</i> . Journal of Comparative Neurology, 1987, 264, 231-249.	1.6	67
142	Immunohistochemical Localization of GRF-Containing Neurons in Rat Brain. Neuroendocrinology, 1986, 42, 143-147.	2.5	26
143	The ultrastructure of enkephalin-immunoreactive neurons in the interpeduncular nucleus of the rat. Journal of Comparative Neurology, 1986, 244, 360-368.	1.6	6
144	Peptide immunohistochemistry demonstrates multiple classes of perigemmal nerve fibers in the circumvallate papilla of the rat. Chemical Senses, 1986, 11, 135-144.	2.0	84

#	Article	IF	CITATIONS
145	Reflex connections of the facial and vagal gustatory systems in the brainstem of the bullhead catfish, <i>lctalurus nebulosus</i> . Journal of Comparative Neurology, 1985, 231, 547-558.	1.6	82
146	Topographic and laminar organization of the vagal gustatory system in the goldfish,carassius auratus. Journal of Comparative Neurology, 1985, 238, 187-201.	1.6	107
147	Organization of motoneuronal pools in the rostral spinal cord of the sea robin,Prionotus carolinus. Journal of Comparative Neurology, 1985, 239, 384-390.	1.6	26
148	Substantia nigra transplants into denervated striatum of the rat: Ultrastructure of graft and host interconnections. Journal of Comparative Neurology, 1985, 240, 60-70.	1.6	301
149	Two gustatory systems: facial and vagal gustatory nuclei have different brainstem connections. Science, 1985, 227, 776-778.	12.6	56
150	Immunohistochemical localization of enkephalin and ACTH-related substances in the pituitary of the lamprey. Cell and Tissue Research, 1984, 235, 107-15.	2.9	25
151	Asymmetry of the olfactory system in the brain of the winter flounder, <i>Pseudopleuronectes americanus</i> . Journal of Comparative Neurology, 1984, 225, 492-510.	1.6	71
152	Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish. Journal of Comparative Neurology, 1984, 229, 129-151.	1.6	113
153	Electrophysiological examination of a non-olfactory, non-gustatory chemosense in the searobin,Prionotus carolinus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1984, 154, 167-174.	1.6	78
154	Vagotomy induced changes in acetyl cholinesterase staining and substance P-like immunoreactivity in the gustatory lobes of goldfish. Anatomy and Embryology, 1984, 170, 257-264.	1.5	16
155	Is parcellation parsimonious?. Behavioral and Brain Sciences, 1984, 7, 339-339.	0.7	1
156	Central organization of the electrosensory lateral line system in bullhead catfishIctalurus nebulosus. Journal of Comparative Neurology, 1983, 217, 1-16.	1.6	51
157	Accuracy of regeneration of vagal parasympathetic axons. Journal of Comparative Neurology, 1983, 221, 145-153.	1.6	8
158	SOMATOTOPY IN THE REPRESENTATION OF THE PECTORAL FIN AND FREE FIN RAYS IN THE SPINAL CORD OF THE SEA ROBIN, <i>PRIONOTUS CAROLINUS</i> . Biological Bulletin, 1982, 163, 154-161.	1.8	53
159	Spinal and medullary dorsal cell axons in the trigeminal nerve in lampreys. Brain Research, 1982, 240, 331-333.	2.2	22
160	Thalamic center for the lateral line system in the catfishIctalurus nebulosus: Evoked potential evidence. Journal of Neurobiology, 1982, 13, 39-47.	3.6	67
161	Input to the medullary pacemaker nucleus in the weakly electric fish, Eigenmannia (sternopygidae,) Tj ETQq1 1 0	.784314 r 2.2	gBT/Overloci
169	Enkephalin-like immunoreactivity in the gustatory lobes and visceral nuclei in the brains of goldfish	0.0	30

and catfish. Neuroscience, 1981, 6, 2747-2758.

#	Article	IF	CITATIONS
163	Enkephalin immunoreactivity in Golgi cells and mossy fibres of mammalian, avian, amphibian and teleost cerebellum. Neuroscience, 1981, 6, 2407-2416.	2.3	78
164	Central connections of the posterior lateral line lobe in mormyrid fish. Experimental Brain Research, 1981, 42, 9-22.	1.5	147
165	Electrosensory pathways to the valvula cerebelli in mormyrid fish. Experimental Brain Research, 1981, 42, 23-33.	1.5	67
166	Central projections of the frontal organ of Rana pipiens, as demonstrated by the anterograde transport of horseradish peroxidase. Cell and Tissue Research, 1980, 211, 215-22.	2.9	49
167	Nonolfactory Sensory Pathway to the Telencephalon in a Teleost Fish. Science, 1980, 210, 671-673.	12.6	107
168	Gustatory pathways in the bullhead catfish. II. Facial lobe connections. Journal of Comparative Neurology, 1978, 180, 691-705.	1.6	103
169	Cerebellar afferents in teleost catfish (lctaluridae). Journal of Comparative Neurology, 1978, 181, 173-181.	1.6	89
170	Efferent neurons of the teleost cerebellum. Brain Research, 1978, 153, 608-614.	2.2	101
171	Retrograde HRP labelling of the oculomotoneurons in adult lampreys. Brain Research, 1978, 154, 123-127.	2.2	34
172	The accessory optic system in teleosts. Brain Research, 1978, 153, 144-149.	2.2	97
173	A direct thalamo-cerebellar pathway in pigeon and catfish. Brain Research, 1976, 102, 335-338.	2.2	90
174	An asymmetric optomotor response in developing flounder larvae (Pseudopleuronectes americanus). Vision Research, 1976, 16, 941-943.	1.4	8
175	Gustatory pathways in the bullhead catfish. I. Connections of the anterior ganglion. Journal of Comparative Neurology, 1976, 165, 513-526.	1.6	97
176	The distribution of the olfactory tracts in the bullhead catfish, <i>Lctalurus nebulosus</i> . Journal of Comparative Neurology, 1975, 161, 125-141.	1.6	141
177	Neuromelanin: a source of possible error in HRP material. Brain Research, 1975, 98, 183-188.	2.2	19