
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4418963/publications.pdf Version: 2024-02-01



I-F LAMADOUE

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere.<br>Bulletin of the American Meteorological Society, 2022, 103, E761-E790.                                           | 1.7 | 39        |
| 2  | A revised lower estimate of ozone columns during Earth's oxygenated history. Royal Society Open<br>Science, 2022, 9, 211165.                                                                                        | 1.1 | 13        |
| 3  | Spurious Late Historicalâ€Era Warming in CESM2 Driven by Prescribed Biomass Burning Emissions.<br>Geophysical Research Letters, 2022, 49, .                                                                         | 1.5 | 29        |
| 4  | The influence of iodine on the Antarctic stratospheric ozone hole. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                                    | 3.3 | 15        |
| 5  | Sulfur emissions from consumption by developed and developing countries produce comparable climate impacts. Nature Geoscience, 2022, 15, 184-189.                                                                   | 5.4 | 3         |
| 6  | Scientific data from precipitation driver response model intercomparison project. Scientific Data, 2022, 9, 123.                                                                                                    | 2.4 | 5         |
| 7  | Characterizing Changes in Eastern U.S. Pollution Events in a Warming World. Journal of Geophysical<br>Research D: Atmospheres, 2022, 127, .                                                                         | 1.2 | 8         |
| 8  | Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century.<br>Nature Communications, 2022, 13, 2768.                                                                         | 5.8 | 20        |
| 9  | Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison.<br>Atmospheric Chemistry and Physics, 2021, 21, 853-874.                                                      | 1.9 | 65        |
| 10 | Intercomparison Between Surrogate, Explicit, and Full Treatments of VSL Bromine Chemistry Within<br>the CAMâ€Chem Chemistryâ€Climate Model. Geophysical Research Letters, 2021, 48, e2020GL091125.                  | 1.5 | 11        |
| 11 | Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble. Atmospheric Chemistry and Physics, 2021, 21, 3317-3343.                           | 1.9 | 33        |
| 12 | Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data<br>Fusion of Observations and Model Output for 1990–2017. Environmental Science & Technology,<br>2021, 55, 4389-4398. | 4.6 | 47        |
| 13 | Sensitivity of modeled Indian monsoon to Chinese and Indian aerosol emissions. Atmospheric<br>Chemistry and Physics, 2021, 21, 3593-3605.                                                                           | 1.9 | 13        |
| 14 | Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6.<br>Earth System Dynamics, 2021, 12, 253-293.                                                                      | 2.7 | 236       |
| 15 | Exploration of the Global Burden of Dementia Attributable to PM2.5: What Do We Know Based on<br>Current Evidence?. GeoHealth, 2021, 5, e2020GH000356.                                                               | 1.9 | 12        |
| 16 | Tropical Stratospheric Circulation and Ozone Coupled to Pacific Multiâ€Decadal Variability.<br>Geophysical Research Letters, 2021, 48, e2020GL092162.                                                               | 1.5 | 5         |
| 17 | Global climate disruption and regional climate shelters after the Toba supereruption. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                 | 3.3 | 21        |
| 18 | Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter<br>Decomposition Across Biomes. Frontiers in Forests and Global Change, 2021, 4, .                                         | 1.0 | 20        |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Coupled Climate Responses to Recent Australian Wildfire and COVIDâ€19 Emissions Anomalies Estimated in CESM2. Geophysical Research Letters, 2021, 48, e2021GL093841.                                           | 1.5 | 19        |
| 20 | Distinct surface response to black carbon aerosols. Atmospheric Chemistry and Physics, 2021, 21, 13797-13809.                                                                                                  | 1.9 | 2         |
| 21 | Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements.<br>Atmospheric Chemistry and Physics, 2021, 21, 13729-13746.                                                 | 1.9 | 4         |
| 22 | Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 2021, 21, 1105-1126.                                                                           | 1.9 | 39        |
| 23 | Antarctic ozone hole modifies iodine geochemistry on the Antarctic Plateau. Nature Communications, 2021, 12, 5836.                                                                                             | 5.8 | 6         |
| 24 | The Role of Natural Halogens in Global Tropospheric Ozone Chemistry and Budget Under Different<br>21st Century Climate Scenarios. Journal of Geophysical Research D: Atmospheres, 2021, 126,<br>e2021JD034859. | 1.2 | 10        |
| 25 | Impacts of emission changes in China from 2010 to 2017 on domestic and intercontinental air quality and health effect. Atmospheric Chemistry and Physics, 2021, 21, 16051-16065.                               | 1.9 | 9         |
| 26 | Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 2021, 12, 1393-1411.                                                                                                          | 2.7 | 131       |
| 27 | Global Atmospheric Budget of Acetone: Airâ€Sea Exchange and the Contribution to Hydroxyl Radicals.<br>Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032553.                                | 1.2 | 17        |
| 28 | Large influence of dust on the Precambrian climate. Nature Communications, 2020, 11, 4427.                                                                                                                     | 5.8 | 10        |
| 29 | The effect of rapid adjustments to halocarbons and N2O on radiative forcing. Npj Climate and Atmospheric Science, 2020, 3, .                                                                                   | 2.6 | 7         |
| 30 | Global sensitivity analysis of chemistry–climate model budgets of tropospheric ozone and OH:<br>exploring model diversity. Atmospheric Chemistry and Physics, 2020, 20, 4047-4058.                             | 1.9 | 38        |
| 31 | Assessing California Wintertime Precipitation Responses to Various Climate Drivers. Journal of<br>Geophysical Research D: Atmospheres, 2020, 125, e2019JD031736.                                               | 1.2 | 4         |
| 32 | Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites.<br>Atmospheric Chemistry and Physics, 2020, 20, 281-301.                                                   | 1.9 | 6         |
| 33 | The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth<br>Systems, 2020, 12, e2019MS001916.                                                                                 | 1.3 | 935       |
| 34 | Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 2020, 6, eaba1981.                                               | 4.7 | 321       |
| 35 | Natural halogens buffer tropospheric ozone in a changing climate. Nature Climate Change, 2020, 10,<br>147-154.                                                                                                 | 8.1 | 37        |
| 36 | The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001882.                                                         | 1.3 | 189       |

| #  | Article                                                                                                                                                                                                                              | IF                       | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|
| 37 | Local and remote mean and extreme temperature response to regional aerosol emissions reductions.<br>Atmospheric Chemistry and Physics, 2020, 20, 3009-3027.                                                                          | 1.9                      | 25        |
| 38 | Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in<br>the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of<br>America, 2020, 117, 4505-4510. | 3.3                      | 118       |
| 39 | Distinct responses of Asian summer monsoon to black carbon aerosols and greenhouse gases.<br>Atmospheric Chemistry and Physics, 2020, 20, 11823-11839.                                                                               | 1.9                      | 15        |
| 40 | How aerosols and greenhouse gases influence the diurnal temperature range. Atmospheric Chemistry and Physics, 2020, 20, 13467-13480.                                                                                                 | 1.9                      | 23        |
| 41 | Seasonal impact of biogenic very short-lived bromocarbons on lowermost stratospheric ozone<br>between 60Ű N and 60Ű S during the 21stÂcentury. Atmospheric Chemistry and Physics, 2020, 20, 80                                       | 18 <mark>3-8</mark> 102. | 11        |
| 42 | Response of surface shortwave cloud radiative effect to greenhouse gases and aerosols and its impact on summer maximum temperature. Atmospheric Chemistry and Physics, 2020, 20, 8251-8266.                                          | 1.9                      | 7         |
| 43 | Climate and air quality impacts due to mitigation of non-methane near-term climate forcers.<br>Atmospheric Chemistry and Physics, 2020, 20, 9641-9663.                                                                               | 1.9                      | 30        |
| 44 | Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence. Atmospheric Chemistry and Physics, 2020, 20, 9961-9977.                                                 | 1.9                      | 16        |
| 45 | The Southern Hemisphere Midlatitude Circulation Response to Rapid Adjustments and Sea Surface<br>Temperature Driven Feedbacks. Journal of Climate, 2020, 33, 9673-9690.                                                              | 1.2                      | 3         |
| 46 | Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. Npj Climate and Atmospheric Science, 2019, 2, .                                                                                                | 2.6                      | 21        |
| 47 | High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2). Geophysical Research Letters, 2019, 46, 8329-8337.                                                                                                   | 1.5                      | 249       |
| 48 | Ocean Biogeochemistry Control on the Marine Emissions of Brominated Very Shortâ€Lived<br>Ozoneâ€Depleting Substances: A Machineâ€Learning Approach. Journal of Geophysical Research D:<br>Atmospheres, 2019, 124, 12319-12339.       | 1.2                      | 17        |
| 49 | Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, and I) Using the<br>CAMâ€Chem Global Chemistry limate Model. Journal of Advances in Modeling Earth Systems, 2019, 11,<br>2259-2289.                       | 1.3                      | 31        |
| 50 | The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12380-12403.                                                                                             | 1.2                      | 261       |
| 51 | Observationally constrained aerosol–cloud semi-direct effects. Npj Climate and Atmospheric Science, 2019, 2, .                                                                                                                       | 2.6                      | 35        |
| 52 | Evaluating Simulations of Interhemispheric Transport: Interhemispheric Exchange Time Versus<br>SF <sub>6</sub> Age. Geophysical Research Letters, 2019, 46, 1113-1120.                                                               | 1.5                      | 12        |
| 53 | Comparing Surface and Stratospheric Impacts of Geoengineering With Different SO <sub>2</sub><br>Injection Strategies. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7900-7918.                                          | 1.2                      | 56        |
| 54 | Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell.<br>Atmospheric Chemistry and Physics, 2019, 19, 5511-5528.                                                                              | 1.9                      | 8         |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Arctic Amplification Response to Individual Climate Drivers. Journal of Geophysical Research D:<br>Atmospheres, 2019, 124, 6698-6717.                                                                                                              | 1.2 | 39        |
| 56 | Atmospheric Acetaldehyde: Importance of Air‣ea Exchange and a Missing Source in the Remote<br>Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.                                                                                      | 1.5 | 41        |
| 57 | Impacts of climate change and emissions on atmospheric oxidized nitrogen deposition over East Asia.<br>Atmospheric Chemistry and Physics, 2019, 19, 887-900.                                                                                       | 1.9 | 14        |
| 58 | Anthropogenic nitrogen inputs and impacts on oceanic N2O fluxes in the northern Indian Ocean: The<br>need for an integrated observation and modelling approach. Deep-Sea Research Part II: Topical Studies<br>in Oceanography, 2019, 166, 104-113. | 0.6 | 9         |
| 59 | Comparison of Effective Radiative Forcing Calculations Using Multiple Methods, Drivers, and Models.<br>Journal of Geophysical Research D: Atmospheres, 2019, 124, 4382-4394.                                                                       | 1.2 | 21        |
| 60 | Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2).<br>Journal of Advances in Modeling Earth Systems, 2019, 11, 4323-4351.                                                                                 | 1.3 | 87        |
| 61 | Novel approaches to improve estimates of short-lived halocarbon emissions during summer from the<br>Southern Ocean using airborne observations. Atmospheric Chemistry and Physics, 2019, 19, 14071-14090.                                          | 1.9 | 5         |
| 62 | Efficacy of Climate Forcings in PDRMIP Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12824-12844.                                                                                                                             | 1.2 | 55        |
| 63 | Water vapour adjustments and responses differ between climate drivers. Atmospheric Chemistry and Physics, 2019, 19, 12887-12899.                                                                                                                   | 1.9 | 29        |
| 64 | Holistic Assessment of SO 2 Injections Using CESM1(WACCM): Introduction to the Special Issue.<br>Journal of Geophysical Research D: Atmospheres, 2019, 124, 444-450.                                                                               | 1.2 | 2         |
| 65 | The importance of aerosol scenarios in projections of future heat extremes. Climatic Change, 2018, 146, 393-406.                                                                                                                                   | 1.7 | 47        |
| 66 | Isolating the Meteorological Impact of 21st Century GHG Warming on the Removal and Atmospheric<br>Loading of Anthropogenic Fine Particulate Matter Pollution at Global Scale. Earth's Future, 2018, 6,<br>428-440.                                 | 2.4 | 28        |
| 67 | A PDRMIP Multimodel Study on the Impacts of Regional Aerosol Forcings on Global and Regional Precipitation. Journal of Climate, 2018, 31, 4429-4447.                                                                                               | 1.2 | 83        |
| 68 | Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions. Journal of<br>Geophysical Research D: Atmospheres, 2018, 123, 2773-2796.                                                                                     | 1.2 | 15        |
| 69 | Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century. Nature<br>Communications, 2018, 9, 1452.                                                                                                             | 5.8 | 86        |
| 70 | Future heat waves and surface ozone. Environmental Research Letters, 2018, 13, 064004.                                                                                                                                                             | 2.2 | 50        |
| 71 | How Will Air Quality Change in South Asia by 2050?. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1840-1864.                                                                                                                          | 1.2 | 61        |
| 72 | Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt.ÂTambora.<br>Atmospheric Chemistry and Physics, 2018, 18, 2307-2328.                                                                                        | 1.9 | 41        |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying. Geophysical<br>Research Letters, 2018, 45, 2815-2825.                                                                                                                                      | 1.5 | 35        |
| 74 | Weak hydrological sensitivity to temperature change over land, independent of climate forcing. Npj<br>Climate and Atmospheric Science, 2018, 1, .                                                                                                                             | 2.6 | 33        |
| 75 | The Benefits of Reduced Anthropogenic Climate changE (BRACE): a synthesis. Climatic Change, 2018, 146, 287-301.                                                                                                                                                               | 1.7 | 27        |
| 76 | Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission. Atmospheric Chemistry and Physics, 2018, 18, 16809-16828.                                                                                                | 1.9 | 34        |
| 77 | Evaluating simplified chemical mechanisms within present-day simulations of the Community Earth<br>System Model version 1.2 with CAM4 (CESM1.2 CAM-chem): MOZART-4 vs. Reduced Hydrocarbon vs.<br>Super-Fast chemistry. Geoscientific Model Development, 2018, 11, 4155-4174. | 1.3 | 9         |
| 78 | Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols. Atmospheric<br>Chemistry and Physics, 2018, 18, 8439-8452.                                                                                                                                | 1.9 | 40        |
| 79 | CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project. Bulletin of the<br>American Meteorological Society, 2018, 99, 2361-2371.                                                                                                                            | 1.7 | 129       |
| 80 | Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations.<br>Atmospheric Chemistry and Physics, 2018, 18, 7217-7235.                                                                                                                   | 1.9 | 32        |
| 81 | Simulated Global Climate Response to Tropospheric Ozoneâ€Induced Changes in Plant Transpiration.<br>Geophysical Research Letters, 2018, 45, 13070-13079.                                                                                                                      | 1.5 | 20        |
| 82 | Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nature<br>Geoscience, 2018, 11, 949-954.                                                                                                                                             | 5.4 | 85        |
| 83 | Effects of Different Stratospheric SO <sub>2</sub> Injection Altitudes on Stratospheric Chemistry and Dynamics. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4654-4673.                                                                                         | 1.2 | 58        |
| 84 | Drivers of Precipitation Change: An Energetic Understanding. Journal of Climate, 2018, 31, 9641-9657.                                                                                                                                                                         | 1.2 | 63        |
| 85 | Understanding Rapid Adjustments to Diverse Forcing Agents. Geophysical Research Letters, 2018, 45, 12023-12031.                                                                                                                                                               | 1.5 | 113       |
| 86 | Stratospheric Response in the First Geoengineering Simulation Meeting Multiple Surface Climate Objectives. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5762-5782.                                                                                              | 1.2 | 17        |
| 87 | Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes. Geophysical Research Letters, 2018, 45, 11399-11405.                                                                                                                                        | 1.5 | 26        |
| 88 | Connecting regional aerosol emissions reductions to local and remote precipitation responses.<br>Atmospheric Chemistry and Physics, 2018, 18, 12461-12475.                                                                                                                    | 1.9 | 38        |
| 89 | How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition. Atmospheric Measurement Techniques, 2018, 11, 2653-2668.                                                           | 1.2 | 15        |
| 90 | Sensible heat has significantly affected the global hydrological cycle over the historical period.<br>Nature Communications, 2018, 9, 1922.                                                                                                                                   | 5.8 | 44        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Stratospheric Injection of Brominated Very Short‣ived Substances: Aircraft Observations in the<br>Western Pacific and Representation in Global Models. Journal of Geophysical Research D:<br>Atmospheres, 2018, 123, 5690-5719.      | 1.2 | 36        |
| 92  | Spatial and temporal variability of interhemispheric transport times. Atmospheric Chemistry and Physics, 2018, 18, 7439-7452.                                                                                                        | 1.9 | 18        |
| 93  | Changes in a suite of indicators of extreme temperature and precipitation under 1.5 and 2 degrees warming. Environmental Research Letters, 2018, 13, 035009.                                                                         | 2.2 | 26        |
| 94  | Coordination to Understand and Reduce Global Model Biases by U.S. and Chinese Institutions. Bulletin of the American Meteorological Society, 2018, 99, ES109-ES113.                                                                  | 1.7 | 4         |
| 95  | The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment. Bulletin of the American Meteorological Society, 2017, 98, 106-128.                                                                                 | 1.7 | 50        |
| 96  | Quantifying the causes of differences in tropospheric OH within global models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1983-2007.                                                                                 | 1.2 | 27        |
| 97  | Multimodel precipitation responses to removal of U.S. sulfur dioxide emissions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5024-5038.                                                                                | 1.2 | 32        |
| 98  | Cobenefits of global and domestic greenhouse gas emissions for air quality and human health. Lancet,<br>The, 2017, 389, S23.                                                                                                         | 6.3 | 13        |
| 99  | Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon<br>Concentrations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11462-11481.                                                       | 1.2 | 118       |
| 100 | Future global mortality from changes in air pollution attributable to climate change. Nature Climate<br>Change, 2017, 7, 647-651.                                                                                                    | 8.1 | 177       |
| 101 | The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple<br>Injection Locations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,574.                                               | 1.2 | 95        |
| 102 | First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple<br>Simultaneous Climate Objectives. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,616.                                  | 1.2 | 114       |
| 103 | Sensitivity of Aerosol Distribution and Climate Response to Stratospheric SO <sub>2</sub> Injection Locations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,591.                                                    | 1.2 | 79        |
| 104 | Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO <sub>2</sub> Injections.<br>Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,557.                                                            | 1.2 | 69        |
| 105 | Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM). Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,061.                                                      | 1.2 | 128       |
| 106 | PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and<br>Preliminary Results. Bulletin of the American Meteorological Society, 2017, 98, 1185-1198.                                                 | 1.7 | 116       |
| 107 | Improvement of the prediction of surface ozone concentration over conterminous U.S. by a computationally efficient secondâ€order R osenbrock solver in CAM 4―C hem. Journal of Advances in Modeling Earth Systems, 2017, 9, 482-500. | 1.3 | 4         |
| 108 | Global atmospheric chemistry – which air matters. Atmospheric Chemistry and Physics, 2017, 17,<br>9081-9102.                                                                                                                         | 1.9 | 32        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Aerosols at the poles: an AeroCom Phase II multi-model evaluation. Atmospheric Chemistry and Physics, 2017, 17, 12197-12218.                                                                                                                                     | 1.9 | 58        |
| 110 | Modeling the inorganic bromine partitioning in the tropical tropopause layer over the eastern and western Pacific Ocean. Atmospheric Chemistry and Physics, 2017, 17, 9917-9930.                                                                                 | 1.9 | 7         |
| 111 | Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric<br>Chemistry and Physics, 2017, 17, 11135-11161.                                                                                                              | 1.9 | 85        |
| 112 | BrO and inferred Br <sub><i>y</i></sub><br>profiles over the western Pacific: relevance of inorganic bromine sources and a<br>Br <sub><i>y</i></sub> minimum in the aged<br>tropical tropopause layer. Atmospheric Chemistry and Physics, 2017, 17, 15245-15270. | 1.9 | 33        |
| 113 | Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century.<br>Atmospheric Chemistry and Physics, 2017, 17, 1673-1688.                                                                                                      | 1.9 | 41        |
| 114 | Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans.<br>Atmospheric Chemistry and Physics, 2017, 17, 8189-8210.                                                                                                          | 1.9 | 26        |
| 115 | Wildfire air pollution hazard during the 21stÂcentury. Atmospheric Chemistry and Physics, 2017, 17, 9223-9236.                                                                                                                                                   | 1.9 | 66        |
| 116 | Tropospheric transport differences between models using the same largeâ€scale meteorological fields.<br>Geophysical Research Letters, 2017, 44, 1068-1078.                                                                                                       | 1.5 | 34        |
| 117 | AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geoscientific Model Development, 2017, 10, 585-607.                                                                                                                                      | 1.3 | 202       |
| 118 | Community climate simulations to assess avoided impacts in 1.5 and 2â€ <sup>–</sup> °C futures. Earth System Dynamics, 2017, 8, 827-847.                                                                                                                         | 2.7 | 153       |
| 119 | Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models.<br>Environmental Research Letters, 2016, 11, 125008.                                                                                                        | 2.2 | 7         |
| 120 | The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 2016, 9, 3461-3482.                                                                                                                                         | 1.3 | 2,084     |
| 121 | A consistent prescription of stratospheric aerosol for both radiation and chemistry in the<br>Community Earth System Model (CESM1). Geoscientific Model Development, 2016, 9, 2459-2470.                                                                         | 1.3 | 13        |
| 122 | Representation of the Community Earth System Model (CESM1) CAM4-chem within the<br>Chemistry-Climate Model Initiative (CCMI). Geoscientific Model Development, 2016, 9, 1853-1890.                                                                               | 1.3 | 122       |
| 123 | Seasonal cycles of O 3 in the marine boundary layer: Observation and model simulation comparisons.<br>Journal of Geophysical Research D: Atmospheres, 2016, 121, 538-557.                                                                                        | 1.2 | 29        |
| 124 | Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study.<br>Geophysical Research Letters, 2016, 43, 2782-2791.                                                                                                            | 1.5 | 179       |
| 125 | An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7461-7488.                                                                           | 1.2 | 18        |
| 126 | Evaluation of the inter-annual variability of stratospheric chemical composition in chemistry-climate<br>models using ground-based multi species time series. Journal of Atmospheric and Solar-Terrestrial<br>Physics, 2016, 145, 61-84.                         | 0.6 | 6         |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Stratospheric ozone chemistry feedbacks are not critical for the determination of climate sensitivity in CESM1(WACCM). Geophysical Research Letters, 2016, 43, 3928-3934.                                                            | 1.5 | 33        |
| 128 | The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmospheric Chemistry and Physics, 2016, 16, 9847-9862.                                                 | 1.9 | 101       |
| 129 | Regional and global temperature response to anthropogenic<br>SO <sub>2</sub> emissions from China in three climate models.<br>Atmospheric Chemistry and Physics, 2016, 16, 9785-9804.                                                | 1.9 | 46        |
| 130 | Nighttime atmospheric chemistry of iodine. Atmospheric Chemistry and Physics, 2016, 16, 15593-15604.                                                                                                                                 | 1.9 | 31        |
| 131 | Interpreting space-based trends in carbon monoxide with multiple models. Atmospheric Chemistry and Physics, 2016, 16, 7285-7294.                                                                                                     | 1.9 | 31        |
| 132 | A pervasive role for biomass burning in tropical high ozone/low water structures. Nature<br>Communications, 2016, 7, 10267.                                                                                                          | 5.8 | 33        |
| 133 | The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.                                                                                                                                                    | 3.7 | 824       |
| 134 | Injection of iodine to the stratosphere. Geophysical Research Letters, 2015, 42, 6852-6859.                                                                                                                                          | 1.5 | 52        |
| 135 | Sensitivity of regional climate to global temperature and forcing. Environmental Research Letters, 2015, 10, 074001.                                                                                                                 | 2.2 | 14        |
| 136 | Bimodal distribution of free tropospheric ozone over the tropical western Pacific revealed by airborne observations. Geophysical Research Letters, 2015, 42, 7844-7851.                                                              | 1.5 | 18        |
| 137 | A negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine.<br>Atmospheric Chemistry and Physics, 2015, 15, 2215-2224.                                                                         | 1.9 | 63        |
| 138 | How emissions, climate, and land use change will impact mid-century air quality over the United<br>States: a focus on effects at national parks. Atmospheric Chemistry and Physics, 2015, 15, 2805-2823.                             | 1.9 | 105       |
| 139 | lodine oxide in the global marine boundary layer. Atmospheric Chemistry and Physics, 2015, 15, 583-593.                                                                                                                              | 1.9 | 84        |
| 140 | Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation.<br>Atmospheric Chemistry and Physics, 2015, 15, 13487-13506.                                                                                 | 1.9 | 17        |
| 141 | NO <sub>2</sub> seasonal evolution in the north subtropical free<br>troposphere. Atmospheric Chemistry and Physics, 2015, 15, 10567-10579.                                                                                           | 1.9 | 9         |
| 142 | Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection. Environmental Research Letters, 2015, 10, 054004.                                                                     | 2.2 | 3         |
| 143 | Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System<br>Model (CESM1.2). Geoscientific Model Development, 2015, 8, 1395-1426.                                                             | 1.3 | 159       |
| 144 | CESM/CAM5 improvement and application: comparison and evaluation of updated CB05_GE and MOZART-4 gas-phase mechanisms and associated impacts on global air quality and climate. Geoscientific Model Development, 2015, 8, 3999-4025. | 1.3 | 11        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models. Geoscientific Model Development, 2015, 8, 43-49.                                                                            | 1.3 | 51        |
| 146 | Nitrogen Availability Reduces CMIP5 Projections of Twenty-First-Century Land Carbon Uptake*. Journal of Climate, 2015, 28, 2494-2511.                                                                                                         | 1.2 | 87        |
| 147 | The terminator "toy" chemistry test: a simple tool to assess errors in transport schemes. Geoscientific Model Development, 2015, 8, 1299-1313.                                                                                                | 1.3 | 16        |
| 148 | How well do integrated assessment models represent non-CO2 radiative forcing?. Climatic Change, 2015, 133, 565-582.                                                                                                                           | 1.7 | 17        |
| 149 | Impact of aerosol radiative effects on 2000–2010 surface temperatures. Climate Dynamics, 2015, 45, 2165-2179.                                                                                                                                 | 1.7 | 24        |
| 150 | The Role of Clouds in Modulating Global Aerosol Direct Radiative Effects in Spaceborne Active<br>Observations and the Community Earth System Model. Journal of Climate, 2015, 28, 2986-3003.                                                  | 1.2 | 30        |
| 151 | The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for<br>Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the American<br>Meteorological Society, 2015, 96, 1333-1349. | 1.7 | 1,723     |
| 152 | Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13789-13793.                                      | 3.3 | 47        |
| 153 | Developing Climate Model Comparisons. Eos, 2014, 95, 462-462.                                                                                                                                                                                 | 0.1 | 3         |
| 154 | A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes. Geoscientific Model Development, 2014, 7, 105-145.                                                      | 1.3 | 46        |
| 155 | Can regional climate engineering save the summer Arctic sea ice?. Geophysical Research Letters, 2014, 41, 880-885.                                                                                                                            | 1.5 | 32        |
| 156 | Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology, 2014, 42, 67-70.                                                                                                                                                 | 2.0 | 149       |
| 157 | Longâ€ŧerm changes in lower tropospheric baseline ozone concentrations: Comparing chemistryâ€climate<br>models and observations at northern midlatitudes. Journal of Geophysical Research D: Atmospheres,<br>2014, 119, 5719-5736.            | 1.2 | 149       |
| 158 | The role of midlatitude mixing barriers in creating the annual variation of total ozone in high northern latitudes. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9578-9595.                                                     | 1.2 | 5         |
| 159 | Bromine partitioning in the tropical tropopause layer: implications for stratospheric injection.<br>Atmospheric Chemistry and Physics, 2014, 14, 13391-13410.                                                                                 | 1.9 | 90        |
| 160 | Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmospheric Chemistry and Physics, 2014, 14, 12465-12477.                                                          | 1.9 | 157       |
| 161 | lodine chemistry in the troposphere and its effect on ozone. Atmospheric Chemistry and Physics, 2014, 14, 13119-13143.                                                                                                                        | 1.9 | 148       |
| 162 | Aviation 2006 NO <sub>x</sub> -induced effects on atmospheric ozone and<br>HO <sub>x</sub> in Community Earth System Model (CESM). Atmospheric<br>Chemistry and Physics, 2014, 14, 9925-9939.                                                 | 1.9 | 8         |

| #   | Article                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Projections of future summertime ozone over the U.S Journal of Geophysical Research D:<br>Atmospheres, 2014, 119, 5559-5582.                                                                                                                                                                      | 1.2 | 69        |
| 164 | Global distribution and trends of tropospheric ozone: An observation-based review. Elementa, 2014, 2,                                                                                                                                                                                             | 1.1 | 365       |
| 165 | New Directions: GEIA's 2020 vision for better air emissions information. Atmospheric Environment, 2013, 81, 710-712.                                                                                                                                                                              | 1.9 | 25        |
| 166 | The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 2013, 94, 1339-1360.                                                                                                                                                   | 1.7 | 1,848     |
| 167 | Three decades of global methane sources and sinks. Nature Geoscience, 2013, 6, 813-823.                                                                                                                                                                                                           | 5.4 | 1,649     |
| 168 | Clobal premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 2013, 8, 034005.                                                                                                                               | 2.2 | 381       |
| 169 | Attribution of historical ozone forcing to anthropogenic emissions. Nature Climate Change, 2013, 3, 567-570.                                                                                                                                                                                      | 8.1 | 42        |
| 170 | Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health.<br>Nature Climate Change, 2013, 3, 885-889.                                                                                                                                                    | 8.1 | 505       |
| 171 | PORT, a CESM tool for the diagnosis of radiative forcing. Geoscientific Model Development, 2013, 6, 469-476.                                                                                                                                                                                      | 1.3 | 74        |
| 172 | The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geoscientific Model Development, 2013, 6, 179-206.                                                                                         | 1.3 | 388       |
| 173 | Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 5277-5298.                                                             | 1.9 | 288       |
| 174 | A 4-D climatology (1979–2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products. Atmospheric Measurement Techniques, 2013, 6, 1287-1314.                               | 1.2 | 131       |
| 175 | Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). Journal of Climate, 2013, 26, 7372-7391.                                                                                                                                                                                              | 1.2 | 706       |
| 176 | Changes in the frequency and return level of high ozone pollution events over the eastern United States following emission controls. Environmental Research Letters, 2013, 8, 014012.                                                                                                             | 2.2 | 26        |
| 177 | Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 2013, 13, 1853-1877.                                                                                                                                                         | 1.9 | 779       |
| 178 | Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 2063-2090.                                                                                   | 1.9 | 570       |
| 179 | Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric<br>Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics,<br>2013, 13, 2607-2634.                                                                       | 1.9 | 125       |
| 180 | Corrigendum to "Evaluation of preindustrial to present-day black carbon and its albedo forcing<br>from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)" published in<br>Atmos. Chem. Phys., 13, 2607–2634, 2013. Atmospheric Chemistry and Physics, 2013, 13, 6553-6554. | 1.9 | 3         |

| #   | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model<br>Intercomparison Project (ACCMIP): evaluation of historical and projected future changes.<br>Atmospheric Chemistry and Physics, 2013, 13, 7997-8018.                                        | 1.9 | 279       |
| 182 | The impact of emission and climate change on ozone in the United States under representative concentration pathways (RCPs). Atmospheric Chemistry and Physics, 2013, 13, 9607-9621.                                                                                                            | 1.9 | 108       |
| 183 | The Arctic response to remote and local forcing of black carbon. Atmospheric Chemistry and Physics, 2013, 13, 211-224.                                                                                                                                                                         | 1.9 | 87        |
| 184 | Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric<br>Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics,<br>2013, 13, 3063-3085.                                                                      | 1.9 | 361       |
| 185 | Corrigendum to "Pre-industrial to end 21st century projections of tropospheric ozone<br>from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)"<br>published in Atmos. Chem. Phys., 13, 2063–2090, 2013. Atmospheric Chemistry and Physics, 2013, 13,<br>5401-5402. | 1.9 | 12        |
| 186 | Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmospheric Chemistry and Physics, 2013, 13, 2423-2434.                                                                                                                                                      | 1.9 | 223       |
| 187 | Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmospheric Chemistry and Physics, 2013, 13, 2563-2587.                                                                                                                                                  | 1.9 | 257       |
| 188 | Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations.<br>Atmospheric Chemistry and Physics, 2013, 13, 2653-2689.                                                                                                                                       | 1.9 | 150       |
| 189 | Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 2013, 13, 2939-2974.                                                                                                                                                             | 1.9 | 395       |
| 190 | The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America. Atmospheric Chemistry and Physics, 2013, 13, 3149-3161.                                                                                                      | 1.9 | 42        |
| 191 | Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmospheric Chemistry and Physics, 2013, 13, 4057-4072.                                                                                                                             | 1.9 | 61        |
| 192 | A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air. Atmospheric<br>Chemistry and Physics, 2013, 13, 7567-7585.                                                                                                                                                | 1.9 | 37        |
| 193 | Using synthetic tracers as a proxy for summertime PM <sub>2.5</sub> air quality over the<br>Northeastern United States in physical climate models. Geophysical Research Letters, 2013, 40, 755-760.                                                                                            | 1.5 | 5         |
| 194 | The role of circulation features on black carbon transport into the Arctic in the Community<br>Atmosphere Model version 5 (CAM5). Journal of Geophysical Research D: Atmospheres, 2013, 118,<br>4657-4669.                                                                                     | 1.2 | 64        |
| 195 | The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project<br>(GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,036.                                                                                                                  | 1.2 | 202       |
| 196 | Longâ€ŧerm ozone changes and associated climate impacts in CMIP5 simulations. Journal of Geophysical<br>Research D: Atmospheres, 2013, 118, 5029-5060.                                                                                                                                         | 1.2 | 243       |
| 197 | Changes in Stratospheric Temperatures and Their Implications for Changes in the Brewer–Dobson<br>Circulation, 1979–2005. Journal of Climate, 2012, 25, 1759-1772.                                                                                                                              | 1.2 | 45        |
| 198 | Interannual Tropospheric Aerosol Variability in the Late Twentieth Century and Its Impact on Tropical<br>Atlantic and West African Climate by Direct and Semidirect Effects. Journal of Climate, 2012, 25,<br>8031-8056.                                                                       | 1.2 | 12        |

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth<br>System Model. Geoscientific Model Development, 2012, 5, 369-411.                                   | 1.3  | 633       |
| 200 | Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 2012, 5, 709-739.                   | 1.3  | 807       |
| 201 | Tagged ozone mechanism for MOZART-4, CAM-chem and other chemical transport models.<br>Geoscientific Model Development, 2012, 5, 1531-1542.                                                             | 1.3  | 59        |
| 202 | Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environmental Research Letters, 2012, 7, 044025.                          | 2.2  | 148       |
| 203 | Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources. Atmospheric Chemistry and Physics, 2012, 12, 1423-1447.              | 1.9  | 193       |
| 204 | Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere.<br>Atmospheric Chemistry and Physics, 2012, 12, 3939-3949.                                        | 1.9  | 157       |
| 205 | Impact of sampling frequency in the analysis of tropospheric ozone observations. Atmospheric Chemistry and Physics, 2012, 12, 6757-6773.                                                               | 1.9  | 38        |
| 206 | Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements. Atmospheric Chemistry and Physics, 2012, 12, 4493-4512.                 | 1.9  | 23        |
| 207 | Technical Note: Ozonesonde climatology between 1995 and 2011: description, evaluation and applications. Atmospheric Chemistry and Physics, 2012, 12, 7475-7497.                                        | 1.9  | 101       |
| 208 | Potential impacts of Asian carbon aerosols on future US warming. Geophysical Research Letters, 2012, 39, .                                                                                             | 1.5  | 26        |
| 209 | Isocyanic acid in a global chemistry transport model: Tropospheric distribution, budget, and<br>identification of regions with potential health impacts. Journal of Geophysical Research, 2012, 117, . | 3.3  | 24        |
| 210 | Global chemistry-climate modeling and evaluation. Eos, 2012, 93, 539-539.                                                                                                                              | 0.1  | 9         |
| 211 | Global transport of passive tracers in conventional and superparameterized climate models:<br>Evaluation of multiâ€scale methods. Journal of Advances in Modeling Earth Systems, 2012, 4, .            | 1.3  | 4         |
| 212 | Climate System Response to External Forcings and Climate Change Projections in CCSM4. Journal of Climate, 2012, 25, 3661-3683.                                                                         | 1.2  | 241       |
| 213 | Global air quality and climate. Chemical Society Reviews, 2012, 41, 6663.                                                                                                                              | 18.7 | 428       |
| 214 | New Directions: Toward a community emissions approach. Atmospheric Environment, 2012, 51, 333-334.                                                                                                     | 1.9  | 5         |
| 215 | Understanding the drivers for the 20th century change of hydrogen peroxide in Antarctic ice-cores.<br>Geophysical Research Letters, 2011, 38, n/a-n/a.                                                 | 1.5  | 25        |
| 216 | The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models. Journal of Geophysical Research, 2011, 116, .                                          | 3.3  | 40        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Multimodel climate and variability of the stratosphere. Journal of Geophysical Research, 2011, 116, .                                                                                                 | 3.3 | 139       |
| 218 | Using transport diagnostics to understand chemistry climate model ozone simulations. Journal of<br>Geophysical Research, 2011, 116, .                                                                 | 3.3 | 68        |
| 219 | The Seasonal Cycle and Interannual Variability in Stratospheric Temperatures and Links to the<br>Brewer–Dobson Circulation: An Analysis of MSU and SSU Data. Journal of Climate, 2011, 24, 6243-6258. | 1.2 | 33        |
| 220 | Aerosol Impacts on Climate and Biogeochemistry. Annual Review of Environment and Resources, 2011, 36, 45-74.                                                                                          | 5.6 | 207       |
| 221 | Emission scenarios for a global hydrogen economy and the consequences for global air pollution.<br>Global Environmental Change, 2011, 21, 983-994.                                                    | 3.6 | 40        |
| 222 | The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 2011, 4, 543-570.                                                                                     | 1.3 | 803       |
| 223 | Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing.<br>Atmospheric Chemistry and Physics, 2011, 11, 11267-11292.                                             | 1.9 | 244       |
| 224 | The representative concentration pathways: an overview. Climatic Change, 2011, 109, 5-31.                                                                                                             | 1.7 | 5,871     |
| 225 | Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 2011, 109, 163-190.                            | 1.7 | 740       |
| 226 | Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change, 2011, 109, 191-212.                                 | 1.7 | 393       |
| 227 | The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 2011, 109, 213-241.                                                                                    | 1.7 | 2,948     |
| 228 | Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics, 2010, 10, 7017-7039.       | 1.9 | 2,020     |
| 229 | The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century.<br>Atmospheric Chemistry and Physics, 2010, 10, 9473-9486.                                           | 1.9 | 25        |
| 230 | Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmospheric Chemistry and Physics, 2010, 10, 6195-6212.                                                            | 1.9 | 82        |
| 231 | Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmospheric Environment, 2010, 44, 1469-1477.                    | 1.9 | 162       |
| 232 | Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 2010, 3, 43-67.                                                | 1.3 | 1,590     |
| 233 | Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models.<br>Atmospheric Chemistry and Physics, 2010, 10, 9451-9472.                                          | 1.9 | 215       |
| 234 | Decline and recovery of total column ozone using a multimodel time series analysis. Journal of<br>Geophysical Research, 2010, 115, .                                                                  | 3.3 | 74        |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Anthropogenic forcing of the Northern Annular Mode in CCMValâ€2 models. Journal of Geophysical<br>Research, 2010, 115, .                                                  | 3.3 | 32        |
| 236 | Chemistry limate model simulations of spring Antarctic ozone. Journal of Geophysical Research, 2010,<br>115, .                                                            | 3.3 | 51        |
| 237 | Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends.<br>Journal of Geophysical Research, 2010, 115, .                        | 3.3 | 171       |
| 238 | Review of the formulation of presentâ€generation stratospheric chemistry limate models and associated external forcings. Journal of Geophysical Research, 2010, 115, .    | 3.3 | 150       |
| 239 | Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophysical Research<br>Letters, 2010, 37, .                                                 | 1.5 | 62        |
| 240 | Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics. Journal of<br>Geophysical Research, 2010, 115, .                                     | 3.3 | 67        |
| 241 | Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment.<br>Journal of Geophysical Research, 2010, 115, .                        | 3.3 | 280       |
| 242 | Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century.<br>Journal of Geophysical Research, 2010, 115, .                        | 3.3 | 66        |
| 243 | Impact of Changes in Climate and Halocarbons on Recent Lower Stratosphere Ozone and Temperature<br>Trends. Journal of Climate, 2010, 23, 2599-2611.                       | 1.2 | 42        |
| 244 | Global Biodiversity: Indicators of Recent Declines. Science, 2010, 328, 1164-1168.                                                                                        | 6.0 | 3,642     |
| 245 | Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 2009, 6, 2099-2120.     | 1.3 | 399       |
| 246 | Gas hydrates: entrance to a methane age or climate threat?. Environmental Research Letters, 2009, 4, 034007.                                                              | 2.2 | 73        |
| 247 | A Preliminary Synthesis of Modeled Climate Change Impacts on U.S. Regional Ozone Concentrations.<br>Bulletin of the American Meteorological Society, 2009, 90, 1843-1864. | 1.7 | 175       |
| 248 | Early Eocene Arctic climate sensitivity to pCO <sub>2</sub> and basin geography. Geophysical Research<br>Letters, 2009, 36, .                                             | 1.5 | 42        |
| 249 | Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols.<br>Atmospheric Chemistry and Physics, 2009, 9, 6949-6981.                    | 1.9 | 119       |
| 250 | Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite<br>data. Atmospheric Chemistry and Physics, 2009, 9, 8697-8717.        | 1.9 | 418       |
| 251 | The effects of global changes upon regional ozone pollution in the United States. Atmospheric Chemistry and Physics, 2009, 9, 1125-1141.                                  | 1.9 | 56        |
| 252 | Carbon monoxide pollution from cities and urban areas observed by the Terra/MOPITT mission.<br>Geophysical Research Letters, 2008, 35, .                                  | 1.5 | 68        |

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZARTâ€4.<br>Journal of Geophysical Research, 2008, 113, .                                                                                                                             | 3.3 | 154       |
| 254 | Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. Journal of Geophysical Research, 2008, 113, .                                                                                             | 3.3 | 335       |
| 255 | Multimodel projections of climate change from shortâ€lived emissions due to human activities. Journal of Geophysical Research, 2008, 113, .                                                                                                                                  | 3.3 | 74        |
| 256 | Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes. Journal of Geophysical Research, 2008, 113, .                                                                                                           | 3.3 | 57        |
| 257 | Estimating the potential for methane clathrate instability in the 1% O <sub>2</sub> IPCC ARâ€4 simulations. Geophysical Research Letters, 2008, 35, .                                                                                                                        | 1.5 | 21        |
| 258 | Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport<br>Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers<br>(MOZARTâ€4) simulations. Journal of Geophysical Research, 2008, 113, . | 3.3 | 51        |
| 259 | Climate forcing and air quality change due to regional emissions reductions by economic sector.<br>Atmospheric Chemistry and Physics, 2008, 8, 7101-7113.                                                                                                                    | 1.9 | 51        |
| 260 | Maintenance of polar stratospheric clouds in a moist stratosphere. Climate of the Past, 2008, 4, 69-78.                                                                                                                                                                      | 1.3 | 9         |
| 261 | Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14580-14585.                                          | 3.3 | 332       |
| 262 | The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment.<br>Atmospheric Chemistry and Physics, 2007, 7, 4489-4501.                                                                                                                 | 1.9 | 228       |
| 263 | Influence of carbonâ€nitrogen cycle coupling on land model response to CO <sub>2</sub> fertilization<br>and climate variability. Global Biogeochemical Cycles, 2007, 21, .                                                                                                   | 1.9 | 624       |
| 264 | Role of hydrogen sulfide in a Permian-Triassic boundary ozone collapse. Geophysical Research Letters,<br>2007, 34, .                                                                                                                                                         | 1.5 | 22        |
| 265 | Ozone source attribution and its modulation by the Arctic oscillation during the spring months.<br>Journal of Geophysical Research, 2007, 112, .                                                                                                                             | 3.3 | 43        |
| 266 | Observational constraints on the chemistry of isoprene nitrates over the eastern United States.<br>Journal of Geophysical Research, 2007, 112, .                                                                                                                             | 3.3 | 200       |
| 267 | Sensitivity of chemical tracers to meteorological parameters in the MOZARTâ€3 chemical transport model. Journal of Geophysical Research, 2007, 112, .                                                                                                                        | 3.3 | 395       |
| 268 | Paleocene-Eocene Data Model Integration. Eos, 2007, 88, 344.                                                                                                                                                                                                                 | 0.1 | 0         |
| 269 | A review of surface ozone in the polar regions. Atmospheric Environment, 2007, 41, 5138-5161.                                                                                                                                                                                | 1.9 | 133       |
| 270 | Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global<br>Biogeochemical Cycles, 2006, 20, n/a-n/a.                                                                                                                                   | 1.9 | 846       |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Global carbon emissions from biomass burning in the 20th century. Geophysical Research Letters, 2006, 33, n/a-n/a.                                                                                                      | 1.5 | 72        |
| 272 | Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of<br>Geophysical Research, 2006, 111, .                                                                                     | 3.3 | 743       |
| 273 | Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates. Journal of Geophysical Research, 2006, 111, .                                                    | 3.3 | 78        |
| 274 | Ozone pollution from future ship traffic in the Arctic northern passages. Geophysical Research<br>Letters, 2006, 33, .                                                                                                  | 1.5 | 66        |
| 275 | Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes. Journal of Geophysical Research, 2006, 111, .                                                                | 3.3 | 254       |
| 276 | Ozone production from the 2004 North American boreal fires. Journal of Geophysical Research, 2006, 111, .                                                                                                               | 3.3 | 114       |
| 277 | Modeling the response to changes in tropospheric methane concentration: Application to the Permian-Triassic boundary. Paleoceanography, 2006, 21, .                                                                     | 3.0 | 20        |
| 278 | The Global Atmospheric Environment for the Next Generation. Environmental Science &<br>Technology, 2006, 40, 3586-3594.                                                                                                 | 4.6 | 338       |
| 279 | An AeroCom initial assessment – optical properties in aerosol component modules of global models.<br>Atmospheric Chemistry and Physics, 2006, 6, 1815-1834.                                                             | 1.9 | 697       |
| 280 | Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmospheric Chemistry and Physics, 2006, 6, 575-599.                                                     | 1.9 | 140       |
| 281 | Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric<br>Chemistry and Physics, 2006, 6, 1777-1813.                                                                         | 1.9 | 1,202     |
| 282 | Multi-model ensemble simulations of tropospheric NO <sub>2</sub><br>compared with GOME retrievals for the year 2000. Atmospheric Chemistry and Physics, 2006, 6,<br>2943-2979.                                          | 1.9 | 127       |
| 283 | Toward an Earth system model: atmospheric chemistry, coupling, and petascale computing. Journal of<br>Physics: Conference Series, 2006, 46, 343-350.                                                                    | 0.3 | 12        |
| 284 | Evaluation of 2001 springtime CO transport overWest Africa using MOPITT CO measurements assimilated in a global chemistry transport model. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 163-176.      | 0.8 | 34        |
| 285 | NITROGEN DEPOSITION ONTO THE UNITED STATES AND WESTERN EUROPE: SYNTHESIS OF OBSERVATIONS AND MODELS. , 2005, 15, 38-57.                                                                                                 |     | 357       |
| 286 | Improved albedo formulation for chemistry transport models based on satellite observations and<br>assimilated snow data and its impact on tropospheric photochemistry. Journal of Geophysical<br>Research, 2005, 110, . | 3.3 | 16        |
| 287 | Tropospheric ozone evolution between 1890 and 1990. Journal of Geophysical Research, 2005, 110, .                                                                                                                       | 3.3 | 134       |
| 288 | Quantifying CO emissions from the 2004 Alaskan wildfires using MOPITT CO data. Geophysical<br>Research Letters, 2005, 32, .                                                                                             | 1.5 | 163       |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Response of a coupled chemistry-climate model to changes in aerosol emissions: Global impact on the hydrological cycle and the tropospheric burdens of OH, ozone, and NOx. Geophysical Research Letters, 2005, 32, .   | 1.5 | 57        |
| 290 | Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach:<br>Analysis of nitrogen deposition. Journal of Geophysical Research, 2005, 110, .                                          | 3.3 | 266       |
| 291 | Arctic Oscillation modulation of the Northern Hemisphere spring tropospheric ozone. Geophysical<br>Research Letters, 2004, 31, n/a-n/a.                                                                                | 1.5 | 29        |
| 292 | Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model:<br>Description and background tropospheric chemistry evaluation. Journal of Geophysical Research,<br>2004, 109, n/a-n/a. | 3.3 | 365       |
| 293 | Evaluation of operational radiances for the Measurements of Pollution in the Troposphere (MOPITT)<br>instrument CO thermal band channels. Journal of Geophysical Research, 2004, 109, n/a-n/a.                         | 3.3 | 40        |
| 294 | Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles. Journal of Geophysical Research, 2004, 109, n/a-n/a.                                                 | 3.3 | 209       |
| 295 | Application of a bias estimator for the improved assimilation of Measurements of Pollution in the<br>Troposphere (MOPITT) carbon monoxide retrievals. Journal of Geophysical Research, 2004, 109, .                    | 3.3 | 30        |
| 296 | Monthly CO surface sources inventory based on the 2000-2001 MOPITT satellite data. Geophysical Research Letters, 2004, 31, n/a-n/a.                                                                                    | 1.5 | 171       |
| 297 | Assimilation of the 2000–2001 CO MOPITT retrievals with optimized surface emissions. Geophysical Research Letters, 2004, 31, .                                                                                         | 1.5 | 22        |
| 298 | Evaluation of CO simulations and the analysis of the CO budget for Europe. Journal of Geophysical Research, 2004, 109, .                                                                                               | 3.3 | 75        |
| 299 | Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. Journal of Geophysical Research, 2004, 109, .                                                                  | 3.3 | 213       |
| 300 | Model analysis of the temporal and geographical origin of the CO distribution during the TOPSE campaign. Journal of Geophysical Research, 2003, 108, TOP 2-1.                                                          | 3.3 | 28        |
| 301 | Budget of tropospheric ozone during TOPSE from two chemical transport models. Journal of<br>Geophysical Research, 2003, 108, .                                                                                         | 3.3 | 56        |
| 302 | A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research, 2003, 108, n/a-n/a.                                                   | 3.3 | 848       |
| 303 | Tropospheric ozone over the tropical Atlantic: A satellite perspective. Journal of Geophysical Research, 2003, 108, .                                                                                                  | 3.3 | 119       |
| 304 | Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument.<br>Journal of Geophysical Research, 2003, 108, .                                                                       | 3.3 | 378       |
| 305 | Improving the modeling of error variance evolution in the assimilation of chemical species:<br>Application to MOPITT data. Geophysical Research Letters, 2003, 30, .                                                   | 1.5 | 10        |
| 306 | Identification of CO plumes from MOPITT data: Application to the August 2000 Idaho-Montana forest fires. Geophysical Research Letters, 2003, 30, .                                                                     | 1.5 | 39        |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Constraining tropospheric ozone column through data assimilation. Journal of Geophysical<br>Research, 2002, 107, ACH 9-1.                                                                                    | 3.3 | 29        |
| 308 | Inverse modeling of carbon monoxide surface emissions using Climate Monitoring and Diagnostics<br>Laboratory network observations. Journal of Geophysical Research, 2002, 107, ACH 10-1.                     | 3.3 | 86        |
| 309 | Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. Journal of Geophysical Research, 2001, 106, 7313-7336.                       | 3.3 | 298       |
| 310 | Assimilation of carbon monoxide measured from satellite in a three-dimensional chemistry-transport model. Journal of Geophysical Research, 2001, 106, 15385-15394.                                           | 3.3 | 28        |
| 311 | Episodic modeling of the chemical structure of the troposphere as revealed during the spring MLOPEX 2 intensive. Journal of Geophysical Research, 2000, 105, 26809-26839.                                    | 3.3 | 34        |
| 312 | Assimilation of satellite observations of long-lived chemical species in global chemistry transport models. Journal of Geophysical Research, 2000, 105, 29135-29144.                                         | 3.3 | 97        |
| 313 | Three-dimensional model study of the influence of stratosphere-troposphere exchange and its distribution on tropospheric chemistry. Journal of Geophysical Research, 1999, 104, 26363-26372.                 | 3.3 | 20        |
| 314 | Assimilation of Measurement of Air Pollution from Space (MAPS) CO in a global three-dimensional model. Journal of Geophysical Research, 1999, 104, 26209-26218.                                              | 3.3 | 41        |
| 315 | Measurements of reactive nitrogen and ozone to 5-km altitude in June 1990 over the southeastern<br>United States. Journal of Geophysical Research, 1998, 103, 8369-8388.                                     | 3.3 | 19        |
| 316 | Hemispheric asymmetries and seasonal variations of the lowermost stratospheric water vapor and ozone derived from SAGE II data. Journal of Geophysical Research, 1997, 102, 28177-28184.                     | 3.3 | 60        |
| 317 | Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact<br>on carbon uptake by terrestrial ecosystems. Journal of Geophysical Research, 1997, 102, 15849-15866. | 3.3 | 264       |
| 318 | Modeling bio-atmospheric coupling of the nitrogen cycle through NOx emissions and NOy deposition.<br>Nutrient Cycling in Agroecosystems, 1997, 48, 7-24.                                                     | 1.1 | 44        |
| 319 | Three-dimensional study of the relative contributions of the different nitrogen sources in the troposphere. Journal of Geophysical Research, 1996, 101, 22955-22968.                                         | 3.3 | 98        |
| 320 | Modulation of tropospheric ozone by a propagating gravity wave. Journal of Geophysical Research, 1996, 101, 26605-26613.                                                                                     | 3.3 | 39        |
| 321 | Cross-tropopause mixing of ozone through gravity wave breaking: Observation and modeling. Journal of Geophysical Research, 1996, 101, 22969-22976.                                                           | 3.3 | 45        |
| 322 | Cross-Tropopause Mass Exchange and Potential Vorticity Budget in a Simulated Tropopause Folding.<br>Journals of the Atmospheric Sciences, 1994, 51, 2246-2269.                                               | 0.6 | 166       |
| 323 | Environmental effects of large igneous province magmatism: a Siberian perspective. , 0, , 307-320.                                                                                                           |     | 4         |
| 324 | The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 0, , 130204122247009.                                                             | 1.7 | 103       |