Christoffer Fremling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4417789/publications.pdf

Version: 2024-02-01

41344 48315 8,129 120 49 88 citations h-index g-index papers 122 122 122 5252 all docs

docs citations times ranked citing authors

#	Article	IF	Citations
1	Discovery and characterization of five new eclipsing AMÂCVn systems. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5440-5461.	4.4	22
2	Maximum luminosities of normal stripped-envelope supernovae are brighter than explosion models allow. Astronomy and Astrophysics, 2022, 657, A64.	5.1	8
3	A WC/WO star exploding within an expanding carbon–oxygen–neon nebula. Nature, 2022, 601, 201-204.	27.8	48
4	Supernova siblings and their parent galaxies in the Zwicky Transient Facility Bright Transient Survey. Monthly Notices of the Royal Astronomical Society, 2022, 511, 241-254.	4.4	6
5	Autonomous Real-Time Science-Driven Follow-up of Survey Transients. Lecture Notes in Computer Science, 2022, , 59-72.	1.3	1
6	DBSP_DRP: A Python package for automated spectroscopic data reduction of DBSP data. Journal of Open Source Software, 2022, 7, 3612.	4.6	8
7	Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. Astrophysical Journal, 2022, 927, 10.	4.5	10
8	The Type Icn SN 2021csp: Implications for the Origins of the Fastest Supernovae and the Fates of Wolf–Rayet Stars. Astrophysical Journal, 2022, 927, 180.	4.5	35
9	In Search of Short Gamma-Ray Burst Optical Counterparts with the Zwicky Transient Facility. Astrophysical Journal, 2022, 932, 40.	4.5	3
10	Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j. Nature Astronomy, 2021, 5, 46-53.	10.1	71
11	Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations: Entering a New Era of Population Studies. Astrophysical Journal, 2021, 908, 4.	4.5	174
12	AT 2019avd: a novel addition to the diverse population of nuclear transients. Astronomy and Astrophysics, 2021, 647, A9.	5.1	21
13	Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae. Astrophysical Journal, 2021, 907, 99.	4.5	59
14	Time-series and Phase-curve Photometry of the Episodically Active Asteroid (6478) Gault in a Quiescent State Using APO, GROWTH, P200, and ZTF. Astrophysical Journal Letters, 2021, 911, L35.	8.3	10
15	The luminous and rapidly evolving SN 2018bcc. Astronomy and Astrophysics, 2021, 649, A163.	5.1	14
16	A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion. Astrophysical Journal, 2021, 912, 46.	4.5	66
17	The ZTF Source Classification Project. I. Methods and Infrastructure. Astronomical Journal, 2021, 161, 267.	4.7	16
18	SN 2018ijp: the explosion of a stripped-envelope star within a dense H-rich shell?. Astronomy and Astrophysics, 2021, 650, A174.	5.1	10

#	Article	IF	CITATIONS
19	Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astronomy and Astrophysics, 2021, 651, A81.	5.1	19
20	Discovery and confirmation of the shortest gamma-ray burst from a collapsar. Nature Astronomy, 2021, 5, 917-927.	10.1	69
21	SNIascore: Deep-learning Classification of Low-resolution Supernova Spectra. Astrophysical Journal Letters, 2021, 917, L2.	8.3	11
22	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	7.7	56
23	SN 2020bqj: A Type Ibn supernova with a long-lasting peak plateau. Astronomy and Astrophysics, 2021, 652, A136.	5.1	7
24	The Type II supernova SN 2020jfo in M 61, implications for progenitor system, and explosion dynamics. Astronomy and Astrophysics, 2021, 655, A105.	5.1	10
25	The luminous red nova AT 2018bwo in NGC 45 and its binary yellow supergiant progenitor. Astronomy and Astrophysics, 2021, 653, A134.	5.1	28
26	A low-energy explosion yields the underluminous Type IIP SN 2020cxd. Astronomy and Astrophysics, 2021, 655, A90.	5.1	10
27	Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5138-5147.	4.4	44
28	The Peculiar Ca-rich SN2019ehk: Evidence for a Type IIb Core-collapse Supernova from a Low-mass Stripped Progenitor. Astrophysical Journal Letters, 2021, 907, L18.	8.3	20
29	Multi-wavelength Observations of AT2019wey: a New Candidate Black Hole Low-mass X-ray Binary. Astrophysical Journal, 2021, 920, 120.	4.5	12
30	Two c's in a pod: cosmology-independent measurement of the Type Ia supernova colour–luminosity relation with a sibling pair. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5340-5356.	4.4	9
31	The Panchromatic Afterglow of GW170817: The Full Uniform Data Set, Modeling, Comparison with Previous Results, and Implications. Astrophysical Journal, 2021, 922, 154.	4.5	27
32	Near-infrared Supernova la Distances: Host Galaxy Extinction and Mass-step Corrections Revisited. Astrophysical Journal, 2021, 923, 237.	4.5	24
33	The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs. Astrophysical Journal, 2020, 895, 32.	4.5	91
34	The Koala: A Fast Blue Optical Transient with Luminous Radio Emission from a Starburst Dwarf Galaxy at zÂ=Â0.27. Astrophysical Journal, 2020, 895, 49.	4.5	72
35	Characterization of the Nucleus, Morphology, and Activity of Interstellar Comet 2I/Borisov by Optical and Near-infrared GROWTH, Apache Point, IRTF, ZTF, and Keck Observations. Astronomical Journal, 2020, 160, 26.	4.7	28
36	The long-lived Type IIn SN 2015da: Infrared echoes and strong interaction within an extended massive shell. Astronomy and Astrophysics, 2020, 635, A39.	5.1	29

#	Article	IF	Citations
37	Type IIn supernova light-curve properties measured from an untargeted survey sample. Astronomy and Astrophysics, 2020, 637, A73.	5.1	47
38	Two stripped envelope supernovae with circumstellar interaction. Astronomy and Astrophysics, 2020, 643, A79.	5.1	18
39	The Broad-lined Ic Supernova ZTF18aaqjovh (SN 2018bvw): An Optically Discovered Engine-driven Supernova Candidate with Luminous Radio Emission. Astrophysical Journal, 2020, 893, 132.	4.5	11
40	Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material. Astrophysical Journal, 2020, 899, 51.	4.5	9
41	The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq. Astrophysical Journal, 2020, 898, 56.	4.5	32
42	SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features. Astrophysical Journal, 2020, 898, 166.	4.5	48
43	SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart. Astrophysical Journal, 2020, 902, 86.	4.5	25
44	SN2019dge: A Helium-rich Ultra-stripped Envelope Supernova. Astrophysical Journal, 2020, 900, 46.	4.5	38
45	Four (Super)luminous Supernovae from the First Months of the ZTF Survey. Astrophysical Journal, 2020, 901, 61.	4.5	25
46	ZTF Early Observations of Type Ia Supernovae. II. First Light, the Initial Rise, and Time to Reach Maximum Brightness. Astrophysical Journal, 2020, 902, 47.	4.5	35
47	SN 2018fif: The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility. Astrophysical Journal, 2020, 902, 6.	4.5	18
48	The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses. Astrophysical Journal, 2020, 905, 58.	4.5	57
49	A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi. Astrophysical Journal, 2020, 903, 132.	4.5	19
50	The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics*. Astrophysical Journal, 2020, 904, 35.	4.5	107
51	Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-Ray Burst Triggers. Astrophysical Journal, 2020, 904, 155.	4.5	26
52	Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3. Astrophysical Journal, 2020, 905, 145.	4.5	69
53	ZTF20aajnksq (AT 2020blt): A Fast Optical Transient at zÂâ‰^Â2.9 with No Detected Gamma-Ray Burst Counterpart. Astrophysical Journal, 2020, 905, 98.	4.5	24
54	Characterization of Temporarily Captured Minimoon 2020 CD ₃ by Keck Time-resolved Spectrophotometry. Astrophysical Journal Letters, 2020, 900, L45.	8.3	15

#	Article	IF	CITATIONS
55	Helium-rich Superluminous Supernovae from the Zwicky Transient Facility. Astrophysical Journal Letters, 2020, 902, L8.	8.3	18
56	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	3.1	453
57	ZTF18aalrxas: A Type IIb Supernova from a Very Extended Low-mass Progenitor. Astrophysical Journal Letters, 2019, 878, L5.	8.3	24
58	Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor. Astrophysical Journal Letters, 2019, 880, L20.	8.3	19
59	A New Class of Changing-look LINERs. Astrophysical Journal, 2019, 883, 31.	4.5	66
60	GROWTH on S190426c: Real-time Search for a Counterpart to the Probable Neutron Star–Black Hole Merger using an Automated Difference Imaging Pipeline for DECam. Astrophysical Journal Letters, 2019, 881, L7.	8.3	39
61	The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy. Publications of the Astronomical Society of the Pacific, 2019, 131, 038003.	3.1	112
62	Machine Learning for the Zwicky Transient Facility. Publications of the Astronomical Society of the Pacific, 2019, 131, 038002.	3.1	83
63	A Six-year Image-subtraction Light Curve of SN 2010jl. Publications of the Astronomical Society of the Pacific, 2019, 131, 054204.	3.1	1
64	The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1031-1049.	4.4	136
65	The luminous late-time emission of the type-Ic supernova iPTF15dtg – evidence for powering from a magnetar?. Astronomy and Astrophysics, 2019, 621, A64.	5.1	19
66	Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astronomy and Astrophysics, 2019, 621, A71.	5.1	59
67	Rapid "Turn-on―of Type-1 AGN in a Quiescent Early-type Galaxy SDSS1115+0544. Astrophysical Journal, 2019, 874, 44.	4.5	33
68	The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution. Astrophysical Journal, 2019, 873, 92.	4.5	69
69	The First Tidal Disruption Flare in ZTF: From Photometric Selection to Multi-wavelength Characterization. Astrophysical Journal, 2019, 872, 198.	4.5	74
70	Supernova PTF 12glz: A Possible Shock Breakout Driven through an Aspherical Wind. Astrophysical Journal, 2019, 872, 141.	4.5	20
71	ZTF 18aaqeasu (SN2018byg): A Massive Helium-shell Double Detonation on a Sub-Chandrasekhar-mass White Dwarf. Astrophysical Journal Letters, 2019, 873, L18.	8.3	56
72	The SPIRITS Sample of Luminous Infrared Transients: Uncovering Hidden Supernovae and Dusty Stellar Outbursts in Nearby Galaxies*. Astrophysical Journal, 2019, 886, 40.	4.5	38

#	Article	IF	CITATIONS
73	On the Origin of SN 2016hil—A Type II Supernova in the Remote Outskirts of an Elliptical Host. Astrophysical Journal, 2019, 887, 127.	4.5	8
74	Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient. Astrophysical Journal, 2019, 887, 169.	4.5	55
75	Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves. Astronomy and Astrophysics, 2019, 631, A147.	5.1	62
76	Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astronomy and Astrophysics, 2019, 627, A115.	5.1	89
77	The Zwicky Transient Facility: Data Processing, Products, and Archive. Publications of the Astronomical Society of the Pacific, 2019, 131, 018003.	3.1	610
78	The Zwicky Transient Facility: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2019, 131, 018002.	3.1	1,020
79	Late-time observations of the extraordinary Type II supernova iPTF14hls. Astronomy and Astrophysics, 2019, 621, A30.	5.1	26
80	ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample. Astrophysical Journal, 2019, 886, 152.	4.5	77
81	Simultaneous Observations of the Northern TESS Sectors by the Zwicky Transient Facility. Research Notes of the AAS, 2019, 3, 136.	0.7	11
82	iPTF Survey for Cool Transients. Publications of the Astronomical Society of the Pacific, 2018, 130, 034202.	3.1	12
83	The SED Machine: A Robotic Spectrograph for Fast Transient Classification. Publications of the Astronomical Society of the Pacific, 2018, 130, 035003.	3.1	132
84	iPTF Archival Search for Fast Optical Transients. Astrophysical Journal Letters, 2018, 854, L13.	8.3	23
85	Sifting for Sapphires: Systematic Selection of Tidal Disruption Events in iPTF. Astrophysical Journal, Supplement Series, 2018, 238, 15.	7.7	30
86	A Dense Companion to the Short-period Millisecond Pulsar Binary PSR J0636+5128. Astrophysical Journal, 2018, 864, 15.	4.5	21
87	Oxygen and helium in stripped-envelope supernovae. Astronomy and Astrophysics, 2018, 618, A37.	5.1	26
88	PTF11mnb: First analog of supernova 2005bf. Astronomy and Astrophysics, 2018, 609, A106.	5.1	24
89	The first direct double neutron star merger detection: Implications for cosmic nucleosynthesis. Astronomy and Astrophysics, 2018, 615, A132.	5.1	134
90	Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing. Astrophysical Journal, 2018, 852, 100.	4.5	49

#	Article	IF	Citations
91	Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light. Astrophysical Journal, 2017, 836, 158.	4.5	79
92	iPTF Discovery of the Rapid "Turn-on―of a Luminous Quasar. Astrophysical Journal, 2017, 835, 144.	4.5	97
93	iPTF16geu: A multiply imaged, gravitationally lensed type la supernova. Science, 2017, 356, 291-295.	12.6	168
94	Revisiting Optical Tidal Disruption Events with iPTF16axa. Astrophysical Journal, 2017, 842, 29.	4.5	124
95	Two New Calcium-rich Gap Transients in Group and Cluster Environments. Astrophysical Journal, 2017, 836, 60.	4.5	60
96	The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nature Astronomy, 2017, 1 , .	10.1	154
97	Hydrogen-poor Superluminous Supernovae with Late-time $H\hat{l}\pm$ Emission: Three Events From the Intermediate Palomar Transient Factory. Astrophysical Journal, 2017, 848, 6.	4.5	91
98	Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science, 2017, 358, 1559-1565.	12.6	559
99	The bumpy light curve of Type IIn supernova iPTF13z over 3 years. Astronomy and Astrophysics, 2017, 605, A6.	5.1	41
100	iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophysical Journal, 2017, 844, 46.	4.5	111
101	Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature, 2017, 551, 210-213.	27.8	112
102	ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE. Astrophysical Journal, 2017, 835, 58.	4.5	61
103	COMMON ENVELOPE EJECTION FOR A LUMINOUS RED NOVA IN M101. Astrophysical Journal, 2017, 834, 107.	4.5	81
104	iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger. Astrophysical Journal, 2017, 847, 54.	4.5	23
105	iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova. Astrophysical Journal, 2017, 851, 107.	4.5	57
106	OGLE-2014-SN-131: A long-rising Type Ibn supernova from a massive progenitor. Astronomy and Astrophysics, 2017, 602, A93.	5.1	22
107	Probing gas and dust in the tidal tail of NGC 5221 with the type Ia supernova iPTF16abc. Astronomy and Astrophysics, 2017, 606, A111.	5.1	5
108	ABSENCE OF FAST-MOVING IRON IN AN INTERMEDIATE TYPE Ia SUPERNOVA BETWEEN NORMAL AND SUPER-CHANDRASEKHAR. Astrophysical Journal, 2016, 823, 147.	4.5	18

#	Article	IF	Citations
109	SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. Astronomy and Astrophysics, 2016, 596, A67.	5.1	20
110	Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project. Astronomy and Astrophysics, 2016, 588, A5.	5.1	39
111	iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor. Astronomy and Astrophysics, 2016, 592, A89.	5.1	49
112	450 d of Type II SN 2013ej in optical and near-infrared. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2003-2018.	4.4	57
113	The bolometric light curves and physical parameters of stripped-envelope supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2973-3002.	4.4	115
114	The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger?. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4428-4439.	4.4	63
115	PTF12os and iPTF13bvn. Astronomy and Astrophysics, 2016, 593, A68.	5.1	136
116	SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE. Astrophysical Journal, 2015, 811, 117.	4.5	26
117	Metallicity at the explosion sites of interacting transients. Astronomy and Astrophysics, 2015, 580, A131.	5.1	53
118	On the triple peaks of SNHunt248 in NGC 5806. Astronomy and Astrophysics, 2015, 581, L4.	5.1	41
119	The rise and fall of the Type Ib supernova iPTF13bvn. Astronomy and Astrophysics, 2014, 565, A114.	5.1	62
120	THE RISE OF SN 2014J IN THE NEARBY GALAXY M82. Astrophysical Journal Letters, 2014, 784, L12.	8.3	104