Fuyuhiko Tamanoi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4416643/publications.pdf

Version: 2024-02-01

36303 27406 11,611 122 51 106 citations h-index g-index papers 124 124 124 14539 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tumor Accumulation of PIP-Based KRAS Inhibitor KR12 Evaluated by the Use of a Simple, Versatile Chicken Egg Tumor Model. Cancers, 2022, 14, 951.	3.7	1
2	Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments. Photonics, 2022, 9, 403.	2.0	4
3	Reducing particle size of biodegradable nanomaterial for efficient curcumin loading. Journal of Materials Science, 2021, 56, 3713-3722.	3.7	9
4	Magnetic Nanoparticles and Alternating Magnetic Field for Cancer Therapy. Fundamental Biomedical Technologies, $2021, 165-179$.	0.2	1
5	Facile synthesis of biodegradable mesoporous functionalized-organosilica nanoparticles for enhancing the anti-cancer efficiency of cordycepin. Microporous and Mesoporous Materials, 2021, 315, 110913.	4.4	4
6	Construction of Boronophenylalanine-Loaded Biodegradable Periodic Mesoporous Organosilica Nanoparticles for BNCT Cancer Therapy. International Journal of Molecular Sciences, 2021, 22, 2251.	4.1	15
7	Designing Mesoporous Silica Nanoparticles to Overcome Biological Barriers by Incorporating Targeting and Endosomal Escape. ACS Applied Materials & Interfaces, 2021, 13, 9656-9666.	8.0	39
8	lodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray. Scientific Reports, 2021, 11, 14192.	3.3	10
9	The CAM Model for CIC-DUX4 Sarcoma and Its Potential Use for Precision Medicine. Cells, 2021, 10, 2613.	4.1	8
10	Recent Development to Explore the Use of Biodegradable Periodic Mesoporous Organosilica (BPMO) Nanomaterials for Cancer Therapy. Pharmaceutics, 2020, 12, 890.	4.5	19
11	Studies on the Exposure of Gadolinium Containing Nanoparticles with Monochromatic X-rays Drive Advances in Radiation Therapy. Nanomaterials, 2020, 10, 1341.	4.1	10
12	Biodegradable Periodic Mesoporous Organosilica (BPMO) Loaded with Daunorubicin: A Promising Nanoparticleâ€Based Anticancer Drug. ChemMedChem, 2020, 15, 593-599.	3.2	33
13	Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: The role of FOXO3a, PTEN and AKT signaling. Biochemical Pharmacology, 2020, 177, 113999.	4.4	37
14	Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: Implications for the Auger therapy. Scientific Reports, 2019, 9, 13275.	3.3	29
15	Patient Derived Chicken Egg Tumor Model (PDcE Model): Current Status and Critical Issues. Cells, 2019, 8, 440.	4.1	38
16	Relationship between the glutathione-responsive degradability of thiol-organosilica nanoparticles and the chemical structures. Journal of Materials Research, 2019, 34, 1266-1278.	2.6	15
17	Recent excitements in the study of the CAM assay. The Enzymes, 2019, 46, 1-9.	1.7	7
18	Biodegradability of Disulfide-Organosilica Nanoparticles Evaluated by Soft X-ray Photoelectron Spectroscopy: Cancer Therapy Implications. ACS Applied Nano Materials, 2019, 2, 479-488.	5.0	39

#	Article	IF	CITATIONS
19	Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1381-1394.	3.3	75
20	Isolation and characterization of the primary epithelial breast cancer cells and the adjacent normal epithelial cells from Iranian women's breast cancer tumors. Cytotechnology, 2018, 70, 625-639.	1.6	12
21	Miniaturization of thiol-organosilica nanoparticles induced by an anionic surfactant. Journal of Colloid and Interface Science, 2018, 526, 51-62.	9.4	16
22	Tumor Targeting and Tumor Growth Inhibition Capability of Mesoporous Silica Nanoparticles in Mouse Models. The Enzymes, 2018, 44, 61-82.	1.7	3
23	Anticancer Drug Delivery Capability of Biodegradable PMO in the Chicken Egg Tumor Model. The Enzymes, 2018, 44, 103-116.	1.7	3
24	Overview of Studies Regarding Mesoporous Silica Nanomaterials and Their Biomedical Application. The Enzymes, 2018, 43, 1-10.	1.7	24
25	An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation. BMC Cancer, 2018, 18, 69.	2.6	8
26	Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Scientific Reports, 2018, 8, 8524.	3.3	101
27	GTP-Binding Protein Rheb. , 2018, , 2288-2293.		0
28	Nanoparticle delivery of siRNA against TWIST to reduce drug resistance and tumor growth in ovarian cancer models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 965-976.	3.3	67
29	A novel inhibitor of farnesyltransferase with a zinc site recognition moiety and a farnesyl group. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3862-3866.	2.2	28
30	Exploiting Enzyme Alterations in Cancer for Drug Activation, Drug Delivery, and Nanotherapy. The Enzymes, 2017, 42, 153-172.	1.7	5
31	In vitro delivery of calcium ions by nanogated mesoporous silica nanoparticles to induce cancer cellular apoptosis. Molecular Systems Design and Engineering, 2017, 2, 384-392.	3.4	12
32	Mevalonate Pathway and Human Cancers. Current Molecular Pharmacology, 2017, 10, 77-85.	1.5	103
33	In vivo Tumor Suppression Efficacy of Mesoporous Silica Nanoparticle-Based Drug Delivery System: Enhanced Efficacy by Folate Modification. , 2017, , 215-234.		0
34	Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, 14806-14811.	3.3	81
35	Periodic Mesoporous Organosilica Nanoparticles with Controlled Morphologies and High Drug/Dye Loadings for Multicargo Delivery in Cancer Cells. Chemistry - A European Journal, 2016, 22, 9607-9615.	3.3	46
36	Frontispiece: Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, .	3.3	0

#	Article	IF	Citations
37	Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. Journal of Controlled Release, 2016, 229, 183-191.	9.9	149
38	GTP-Binding Protein Rheb. , 2016, , 1-6.		0
39	Significance of filamin A in mTORC2 function in glioblastoma. Molecular Cancer, 2015, 14, 127.	19.2	52
40	Nanoformulation of Geranylgeranyltransferase-I Inhibitors for Cancer Therapy: Liposomal Encapsulation and pH-Dependent Delivery to Cancer Cells. PLoS ONE, 2015, 10, e0137595.	2.5	9
41	Rheb Protein Binds CAD (Carbamoyl-phosphate Synthetase 2, Aspartate Transcarbamoylase, and) Tj ETQq1 1 0.78 Localization and Carbamoyl-phosphate Synthetase (CPSase) Activity. Journal of Biological Chemistry, 2015, 290, 1096-1105.	84314 rgB 3.4	T /Overlock 24
42	Significance of KRAS/PAK1/Crk pathway in non-small cell lung cancer oncogenesis. BMC Cancer, 2015, 15, 381.	2.6	26
43	Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Advanced Drug Delivery Reviews, 2015, 95, 40-49.	13.7	228
44	Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1657-1666.	3.3	51
45	How Phytochemicals Prevent Chemical Carcinogens and/or Suppress Tumor Growth?. The Enzymes, 2015, 37, 1-42.	1.7	12
46	Functional Nanovalves on Protein-Coated Nanoparticles for In vitro and In vivo Controlled Drug Delivery. Small, 2015, 11, 319-328.	10.0	65
47	Introduction. The Enzymes, 2014, 36, 1-6.	1.7	0
48	Fission yeast arrestin-related trafficking adaptor, Arn1/Any1, is ubiquitinated by Pub1 E3 ligase and regulates endocytosis of Cat1 amino acid transporter. Biology Open, 2014, 3, 542-552.	1.2	24
49	Hybrid Mesoporous Silica Nanoparticles with pHâ€Operated and Complementary Hâ€Bonding Caps as an Autonomous Drugâ€Delivery System. Chemistry - A European Journal, 2014, 20, 9372-9380.	3.3	40
50	Anticancer Effect and Molecular Targets of Saffron Carotenoids. The Enzymes, 2014, 36, 57-86.	1.7	17
51	Drug Release from Threeâ€Dimensional Cubic Mesoporous Silica Nanoparticles Controlled by Nanoimpellers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 588-594.	1.2	13
52	Twoâ€Photonâ€Triggered Drug Delivery via Fluorescent Nanovalves. Small, 2014, 10, 1752-1755.	10.0	106
53	Recent progress in the study of the Rheb family GTPases. Cellular Signalling, 2014, 26, 1950-1957.	3.6	64
54	In vitro and in vivo effects of geranylgeranyltransferase I inhibitor P61A6 on non-small cell lung cancer cells. BMC Cancer, 2013, 13, 198.	2.6	28

#	Article	IF	Citations
55	Twoâ€Photonâ€Triggered Drug Delivery in Cancer Cells Using Nanoimpellers. Angewandte Chemie - International Edition, 2013, 52, 13813-13817.	13.8	94
56	The Ras Superfamily G-Proteins. The Enzymes, 2013, 33 Pt A, 1-14.	1.7	13
57	Involvement of Lysosomal Exocytosis in the Excretion of Mesoporous Silica Nanoparticles and Enhancement of the Drug Delivery Effect by Exocytosis Inhibition. Small, 2013, 9, 697-704.	10.0	137
58	A Two-Hybrid Approach to Identify Inhibitors of the RAS–RAF Interaction. The Enzymes, 2013, 33 Pt A, 213-248.	1.7	7
59	Recent Progress in Developing Small Molecule Inhibitors Designed to Interfere with Ras Membrane Association. The Enzymes, 2013, 34 Pt. B, 181-200.	1.7	12
60	Psk1, an AGC kinase family member in fission yeast, is directly phosphorylated and controlled by TORC1 and functions as S6 kinase. Journal of Cell Science, 2012, 125, 5840-5849.	2.0	64
61	Nanoparticle-Based Delivery of siRNA and miRNA for Cancer Therapy. The Enzymes, 2012, , 185-203.	1.7	3
62	Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Therapeutic Delivery, 2012, 3, 389-404.	2.2	62
63	Continuous spectroscopic measurements of photo-stimulated release of molecules by nanomachines in a single living cell. Nanoscale, 2012, 4, 3482.	5.6	24
64	Tailoring the biodegradability of porous silicon nanoparticles. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3416-3421.	4.0	46
65	In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 212-220.	3.3	192
66	PAK1 Kinase Promotes Cell Motility and Invasiveness through CRK-II Serine Phosphorylation in Non-Small Cell Lung Cancer Cells. PLoS ONE, 2012, 7, e42012.	2.5	41
67	Global Analysis of Prenylated Proteins by the Use of a Tagging via Substrate Approach. The Enzymes, 2011, , 195-206.	1.7	0
68	Identification and Characterization of Mechanism of Action of P61-E7, a Novel Phosphine Catalysis-Based Inhibitor of Geranylgeranyltransferase-I. PLoS ONE, 2011, 6, e26135.	2.5	17
69	Activating mutations of TOR (target of rapamycin). Genes To Cells, 2011, 16, 141-151.	1.2	60
70	Synthesis of Biomoleculeâ€Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells. Small, 2011, 7, 1816-1826.	10.0	204
71	Ras Signaling in Yeast. Genes and Cancer, 2011, 2, 210-215.	1.9	55
72	Biocompatibility, Biodistribution, and Drugâ€Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small, 2010, 6, 1794-1805.	10.0	947

#	Article	IF	Citations
73	Mesoporous Silica Nanoparticles Facilitate Delivery of siRNA to Shutdown Signaling Pathways in Mammalian Cells. Small, 2010, 6, 1185-1190.	10.0	215
74	Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. Journal of Cell Science, 2010, 123, 777-786.	2.0	82
75	Rheb G-Proteins and the Activation of mTORC1. The Enzymes, 2010, 27, 39-56.	1.7	29
76	Conservation of the Tsc/Rheb/TORC1/S6K/S6 Signaling in Fission Yeast. The Enzymes, 2010, 28, 167-187.	1.7	10
77	Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 2010, 132, 12690-12697.	13.7	550
78	Specific Activation of mTORC1 by Rheb G-protein in Vitro Involves Enhanced Recruitment of Its Substrate Protein. Journal of Biological Chemistry, 2009, 284, 12783-12791.	3.4	179
79	<i>ln vivo</i> antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Molecular Cancer Therapeutics, 2009, 8, 1218-1226.	4.1	72
80	Increasing the length of progerin's isoprenyl anchor does not worsen bone disease or survival in mice with Hutchinson-Gilford progeria syndrome. Journal of Lipid Research, 2009, 50, 126-134.	4.2	33
81	A novel approach to tag and identify geranylgeranylated proteins. Electrophoresis, 2009, 30, 3598-3606.	2.4	63
82	Mesostructured Silica for Optical Functionality, Nanomachines, and Drug Delivery. Journal of the American Ceramic Society, 2009, 92, s2-s10.	3.8	101
83	Silica nanoparticles as a delivery system for nucleic acid-based reagents. Journal of Materials Chemistry, 2009, 19, 6308.	6.7	72
84	The Tsc/Rheb signaling pathway controls basic amino acid uptake via the Cat1 permease in fission yeast. Molecular Genetics and Genomics, 2008, 279, 441-450.	2.1	41
85	Lightâ€Activated Nanoimpellerâ€Controlled Drug Release in Cancer Cells. Small, 2008, 4, 421-426.	10.0	430
86	Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano, 2008, 2, 889-896.	14.6	1,758
87	Characterization of the Rhebâ€mTOR Signaling Pathway in Mammalian Cells: Constitutive Active Mutants of Rheb and mTOR. Methods in Enzymology, 2008, 438, 307-320.	1.0	38
88	Inhibitors of Protein Geranylgeranyltransferase I and Rab Geranylgeranyltransferase Identified from a Library of Allenoate-derived Compounds. Journal of Biological Chemistry, 2008, 283, 9571-9579.	3.4	79
89	The TSC/Rheb/TOR Signaling Pathway in Fission Yeast and Mammalian Cells: Temperature Sensitive and Constitutive Active Mutants of TOR. Cell Cycle, 2007, 6, 1692-1695.	2.6	41
90	Loss of the TOR Kinase Tor2 Mimics Nitrogen Starvation and Activates the Sexual Development Pathway in Fission Yeast. Molecular and Cellular Biology, 2007, 27, 3154-3164.	2.3	181

#	Article	IF	Citations
91	Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3514-3519.	7.1	133
92	Small-Molecule Inhibitors of Protein Geranylgeranyltransferase Type I. Journal of the American Chemical Society, 2007, 129, 5843-5845.	13.7	196
93	Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs. Small, 2007, 3, 1341-1346.	10.0	927
94	Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells. Nanobiotechnology, 2007, 3, 89-95.	1.2	175
95	Chemical Biology/ Chemical Genetics/ Chemical Genomics: Importance of Chemical Library. Chem-Bio Informatics Journal, 2007, 7, 49-68.	0.3	6
96	Therapeutic intervention based on protein prenylation and associated modifications. Nature Chemical Biology, 2006, 2, 518-528.	8.0	176
97	Using Drosophila and Yeast Genetics to Investigate a Role for the Rheb GTPase in Cell Growth. Methods in Enzymology, 2006, 407, 443-454.	1.0	3
98	Increased Rheb-TOR signaling enhances sensitivity of the whole organism to oxidative stress. Journal of Cell Science, 2006, 119, 4285-4292.	2.0	59
99	Ras Family G-Proteins in Saccharomyces Cerevisiae and Schizosaccharomyces Pombe., 2006,, 227-256.		1
100	Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Molecular Microbiology, 2005, 58, 1074-1086.	2.5	83
101	Farnesyltransferase inhibitors reverse altered growth and distribution of actin filaments in Tsc-deficient cells via inhibition of both rapamycin-sensitive and -insensitive pathways. Molecular Cancer Therapeutics, 2005, 4, 918-926.	4.1	55
102	A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12479-12484.	7.1	322
103	The Rheb family of GTP-binding proteins. Cellular Signalling, 2004, 16, 1105-1112.	3.6	175
104	Loss of tuberous sclerosis complex 1 (Tsc1) expression results in increased Rheb/S6K pathway signaling important for astrocyte cell size regulation. Glia, 2004, 47, 180-188.	4.9	69
105	A novel metal-Chelating inhibitor of protein farnesyltransferase. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1523-1526.	2.2	20
106	Drosophila Rheb GTPase is required for cell cycle progression and cell growth. Journal of Cell Science, 2003, 116, 3601-3610.	2.0	147
107	Identification of Dominant Negative Mutants of Rheb GTPase and Their Use to Implicate the Involvement of Human Rheb in the Activation of p70S6K. Journal of Biological Chemistry, 2003, 278, 39921-39930.	3.4	105
108	Characterization of Rheb functions using yeast and mammalian systems. Methods in Enzymology, 2001, 333, 217-231.	1.0	21

#	Article	IF	CITATIONS
109	Failure to farnesylate Rheb protein contributes to the enrichment of GO/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant. Molecular Microbiology, 2001, 41, 1339-1347.	2.5	62
110	Farnesylated proteins and cell cycle progression. Journal of Cellular Biochemistry, 2001, 84, 64-70.	2.6	56
111	Effects of farnesyltransferase inhibitors on cell cycle progression of human cancer cells. Gene Function & Disease, 2001, 2, 99-107.	0.3	O
112	Spatial regulation of the exocyst complex by Rho1 GTPase. Nature Cell Biology, 2001, 3, 353-360.	10.3	288
113	Cdk inhibitors, roscovitine and olomoucine, synergize with farnesyltransferase inhibitor (FTI) to induce efficient apoptosis of human cancer cell lines. Oncogene, 2000, 19, 3059-3068.	5.9	96
114	The Saccharomyces cerevisiae Rheb G-protein Is Involved in Regulating Canavanine Resistance and Arginine Uptake. Journal of Biological Chemistry, 2000, 275, 11198-11206.	3.4	119
115	Protein Farnesylation Is Critical for Maintaining Normal Cell Morphology and Canavanine Resistance in Schizosaccharomyces pombe. Journal of Biological Chemistry, 2000, 275, 429-438.	3.4	35
116	Neurofibromatosis 2 tumour suppressor schwannomin interacts with \hat{l}^2 II-spectrin. Nature Genetics, 1998, 18, 354-359.	21.4	145
117	Characterization of the geranylgeranyl transferase type I fromSchizosaccharomyces pombe. Molecular Microbiology, 1998, 29, 1357-1367.	2.5	26
118	Advances in the development of farnesyltransferase inhibitors: Substrate recognition by protein farnesyltransferase. Journal of Cellular Biochemistry, 1997, 67, 12-19.	2.6	10
119	Mutational and functional analysis of the neurofibromatosis type 1 (NF1) gene. Human Genetics, 1996, 99, 88-92.	3.8	105
120	Prenylation of RAS and Inhibitors of Prenyltransferases. , 1996, , 95-137.		21
121	Inhibitors of ras farnesyltransferases. Trends in Biochemical Sciences, 1993, 18, 349-353.	7.5	167
122	Genetic Analysis of FTase and GGTase I and Natural Product Farnesyltransferase Inhibitors., 0,, 145-157.		1