Kent S Gates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4415707/publications.pdf

Version: 2024-02-01

		81900	1	14465	
148	5,015	39		63	
papers	citations	h-index		g-index	
			_		ı
153	153	153		4334	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Unexpected Complexity in the Products Arising from NaOH-, Heat-, Amine-, and Glycosylase-Induced Strand Cleavage at an Abasic Site in DNA. Chemical Research in Toxicology, 2022, 35, 218-232.	3.3	20
2	Products Generated by Amine-Catalyzed Strand Cleavage at Apurinic/Apyrimidinic Sites in DNA: New Insights from a Biomimetic Nucleoside Model System. Chemical Research in Toxicology, 2022, 35, 203-217.	3.3	8
3	Reconsidering the Chemical Nature of Strand Breaks Derived from Abasic Sites in Cellular DNA: Evidence for 3′-Glutathionylation. Journal of the American Chemical Society, 2022, 144, 10471-10482.	13.7	9
4	Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA. DNA Repair, 2021, 98, 103029.	2.8	17
5	Interstrand Cross-Link Formation Involving Reaction of a Mispaired Cytosine Residue with an Abasic Site in Duplex DNA. Chemical Research in Toxicology, 2021, 34, 1124-1132.	3.3	9
6	Formation and Repair of an Interstrand DNA Cross-Link Arising from a Common Endogenous Lesion. Journal of the American Chemical Society, 2021, 143, 15344-15357.	13.7	22
7	Photoinduced Covalent Irreversible Inactivation of Proline Dehydrogenase by S-Heterocycles. ACS Chemical Biology, 2021, 16, 2268-2279.	3.4	2
8	Synthesis of DNA Duplexes Containing Site-Specific Interstrand Cross-Links via Sequential Reductive Amination Reactions Involving Diamine Linkers and Abasic Sites on Complementary Oligodeoxynucleotides. Chemical Research in Toxicology, 2021, 34, 2384-2391.	3.3	2
9	Structure of a Stable Interstrand DNA Cross-Link Involving a \hat{l}^2 - <i>N</i> -Glycosyl Linkage Between an <i>N</i> -Structure of a Stable Interstrand DNA Cross-Link Involving a \hat{l}^2 - <i>N</i> -Sip>-6-dA Amino Group and an Abasic Site. Biochemistry, 2021, 60, 41-52.	2.5	11
10	Structural and biochemical consequences of pyridoxineâ€dependent epilepsy mutations that target the aldehyde binding site of aldehyde dehydrogenase ALDH 7A1. FEBS Journal, 2020, 287, 173-189.	4.7	7
11	Structural analysis of pathogenic mutations targeting Glu427 of ALDH7A1, the hot spot residue of pyridoxineâ€dependent epilepsy. Journal of Inherited Metabolic Disease, 2020, 43, 635-644.	3.6	6
12	Unhooking of an interstrand cross-link at DNA fork structures by the DNA glycosylase NEIL3. DNA Repair, 2020, 86, 102752.	2.8	23
13	Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Archives of Biochemistry and Biophysics, 2020, 691, 108477.	3.0	15
14	An autoinhibitory role for the GRF zinc finger domain of DNA glycosylase NEIL3. Journal of Biological Chemistry, 2020, 295, 15566-15575.	3.4	14
15	Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate. ACS Chemical Biology, 2020, 15, 936-944.	3.4	10
16	Interstrand DNA Cross-Links Derived from Reaction of a 2-Aminopurine Residue with an Abasic Site. ACS Chemical Biology, 2019, 14, 1481-1489.	3.4	15
17	Preparation and Purification of Oligodeoxynucleotide Duplexes Containing a Site-Specific, Reduced, Chemically Stable Covalent Interstrand Cross-Link Between a Guanine Residue and an Abasic Site. Methods in Molecular Biology, 2019, 1973, 163-175.	0.9	9
18	Enzyme-Activated Generation of Reactive Oxygen Species from Heterocyclic $\langle i \rangle N \langle i \rangle$ -Oxides under Aerobic and Anaerobic Conditions and Its Relevance to Hypoxia-Selective Prodrugs. Chemical Research in Toxicology, 2019, 32, 348-361.	3.3	19

#	Article	IF	CITATIONS
19	Selective covalent capture of a DNA sequence corresponding to a cancer-driving C>G mutation in the <i>KRAS </i> gene by a chemically reactive probe: optimizing a cross-linking reaction with non-canonical duplex structures. RSC Advances, 2019, 9, 32804-32810.	3.6	5
20	Exploiting the Inherent Photophysical Properties of the Major Tirapazamine Metabolite in the Development of Profluorescent Substrates for Enzymes That Catalyze the Bioreductive Activation of Hypoxia-Selective Anticancer Prodrugs. Journal of Organic Chemistry, 2018, 83, 3126-3131.	3.2	12
21	Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations. ACS Nano, 2018, 12, 4194-4205.	14.6	24
22	What is the potential of nanolock– and nanocross–nanopore technology in cancer diagnosis?. Expert Review of Molecular Diagnostics, 2018, 18, 113-117.	3.1	4
23	Oxidative activation of leinamycin E1 triggers alkylation of guanine residues in double-stranded DNA. Chemical Communications, 2018, 54, 256-259.	4.1	5
24	Generation and Single-Molecule Characterization of a Sequence-Selective Covalent Cross-Link Mediated by Mechlorethamine at a C–C Mismatch in Duplex DNA for Discrimination of a Disease-Relevant Single Nucleotide Polymorphism. Bioconjugate Chemistry, 2018, 29, 3810-3816.	3.6	3
25	Application of Suzuki–Miyaura and Buchwald <i>–</i> Hartwig Crossâ€coupling Reactions to the Preparation of Substituted 1,2,4â€Benzotriazine 1â€Oxides Related to the Antitumor Agent Tirapazamine. Journal of Heterocyclic Chemistry, 2017, 54, 155-160.	2.6	9
26	A role for the base excision repair enzyme NEIL3 in replication-dependent repair of interstrand DNA cross-links derived from psoralen and abasic sites. DNA Repair, 2017, 52, 1-11.	2.8	34
27	Sequenceâ€Specific Covalent Capture Coupled with Highâ€Contrast Nanopore Detection of a Diseaseâ€Derived Nucleic Acid Sequence. ChemBioChem, 2017, 18, 1383-1386.	2.6	17
28	Replication and repair of a reduced $2\hat{l}_{,,}$ -deoxyguanosine-abasic site interstrand cross-link in human cells. Nucleic Acids Research, 2017, 45, 6486-6493.	14.5	16
29	Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA. Nucleic Acids Research, 2017, 45, 6275-6283.	14.5	29
30	Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor–Electrophile Conjugate. Biochemistry, 2017, 56, 2051-2060.	2.5	22
31	Allylation and Alkylation of Biologically Relevant Nucleophiles by Diallyl Sulfides. Journal of Organic Chemistry, 2017, 82, 776-780.	3.2	15
32	Importance of the C-Terminus of Aldehyde Dehydrogenase 7A1 for Oligomerization and Catalytic Activity. Biochemistry, 2017, 56, 5910-5919.	2.5	7
33	Nanolock–Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue. ACS Sensors, 2017, 2, 975-981.	7.8	26
34	Simple, Highâ€Yield Syntheses of DNA Duplexes Containing Interstrand DNAâ€DNA Crossâ€Links Between an ⟨i>N⟨ i>⟨sup>â€Aminocytidine Residue and an Abasic Site. Current Protocols in Nucleic Acid Chemistry, 2016, 65, 5.16.1-5.16.15.	0.5	9
35	A New Cross-Link for an Old Cross-Linking Drug: The Nitrogen Mustard Anticancer Agent Mechlorethamine Generates Cross-Links Derived from Abasic Sites in Addition to the Expected Drug-Bridged Cross-Links. Biochemistry, 2016, 55, 7033-7041.	2.5	24
36	Effective molarity in a nucleic acid-controlled reaction. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2627-2630.	2.2	14

#	Article	IF	CITATIONS
37	Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B). Bioorganic and Medicinal Chemistry, 2016, 24, 2631-2640.	3.0	6
38	Crystal structure of a nucleoside model for the interstrand cross-link formed by the reaction of $2\hat{a} \in \mathbb{C}^2$ -deoxyguanosine and an abasic site in duplex DNA. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 624-627.	0.5	5
39	Crystal structure of methyl (<i>S</i>)-4-[(<i>tert</i>)-butoxycarbonyl)amino]-3-oxo-1,2-thiazolidin-2-yl}-3-methylbutanoate: a chemical model for oxidized protein tyrosine phosphatase 1B (PTP1B). Acta Crystallographica Section E: Crystallographic Communications. 2015. 71. 741-743.	0.5	2
40	Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residues in duplex DNA. Nucleic Acids Research, 2015, 43, 3434-3441.	14.5	39
41	Characterization of Interstrand DNA–DNA Cross-Links Using the α-Hemolysin Protein Nanopore. ACS Nano, 2015, 9, 11812-11819.	14.6	31
42	Diethylaminobenzaldehyde Is a Covalent, Irreversible Inactivator of ALDH7A1. ACS Chemical Biology, 2015, 10, 693-697.	3.4	36
43	Generation of Reactive Oxygen Species Mediated by 1-Hydroxyphenazine, a Virulence Factor of <i>Pseudomonas aeruginosa</i> . Chemical Research in Toxicology, 2015, 28, 175-181.	3.3	12
44	Characterization of Interstrand DNA–DNA Cross-Links Derived from Abasic Sites Using Bacteriophage ϕ29 DNA Polymerase. Biochemistry, 2015, 54, 4259-4266.	2.5	20
45	Near-Silence of Isothiocyanate Carbon in 13C NMR Spectra: A Case Study of Allyl Isothiocyanate. Journal of Organic Chemistry, 2015, 80, 4360-4369.	3.2	16
46	Chemical Structure and Properties of Interstrand Cross-Links Formed by Reaction of Guanine Residues with Abasic Sites in Duplex DNA. Journal of the American Chemical Society, 2015, 137, 3933-3945.	13.7	49
47	A Simple, Highâ€Yield Synthesis of DNA Duplexes Containing a Covalent, Thermally Cleavable Interstrand Crossâ€Link at a Defined Location. Angewandte Chemie - International Edition, 2015, 54, 7666-7669.	13.8	26
48	Inactivation of protein tyrosine phosphatases by dietary isothiocyanates. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4549-4552.	2.2	15
49	Reactions of 1,3-Diketones with a Dipeptide Isothiazolidin-3-one: Toward Agents That Covalently Capture Oxidized Protein Tyrosine Phosphatase 1B. Journal of Organic Chemistry, 2015, 80, 12015-12026.	3.2	17
50	Crystal structure of 5-{4′-[(2-{2-[2-(2-ammonioethoxy)ethoxy]ethoxy}ethyl)carbamoyl]-4-methoxy-[1,1′-biphenyl]-3-yl}-3-oxo-1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 336-338.	1,2,5-thiad	liazolidin-2-id
51	Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel. Journal of the American Chemical Society, 2015, 137, 15742-15752.	13.7	45
52	Covalent Adduct Formation between the Antihypertensive Drug Hydralazine and Abasic Sites in Double- and Single-Stranded DNA. Chemical Research in Toxicology, 2014, 27, 2113-2118.	3.3	12
53	Single Molecule Investigation of Ag+ Interactions with Single Cytosine-, Methylcytosine- and Hydroxymethylcytosine-Cytosine Mismatches in a Nanopore. Scientific Reports, 2014, 4, 5883.	3.3	31
54	Interstrand DNA–DNA Cross-Link Formation Between Adenine Residues and Abasic Sites in Duplex DNA. Journal of the American Chemical Society, 2014, 136, 3483-3490.	13.7	111

#	Article	IF	CITATIONS
55	DNA double whammy. Nature Chemistry, 2014, 6, 464-465.	13.6	O
56	Isotopic Labeling Experiments That Elucidate the Mechanism of DNA Strand Cleavage by the Hypoxia-Selective Antitumor Agent 1,2,4-Benzotriazine 1,4-Di- <i>N</i> -oxide. Chemical Research in Toxicology, 2014, 27, 111-118.	3.3	13
57	Toward Hypoxia-Selective DNA-Alkylating Agents Built by Grafting Nitrogen Mustards onto the Bioreductively Activated, Hypoxia-Selective DNA-Oxidizing Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine). Journal of Organic Chemistry, 2014, 79, 7520-7531.	3.2	24
58	Crystal structure of N-(quinolin-6-yl) hydroxylamine. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 322-324.	0.2	1
59	Enzymatic Conversion of 6-Nitroquinoline to the Fluorophore 6-Aminoquinoline Selectively under Hypoxic Conditions. Chemical Research in Toxicology, 2013, 26, 555-563.	3.3	25
60	Redox Regulation of Protein Tyrosine Phosphatases. Methods in Enzymology, 2013, 528, 129-154.	1.0	25
61	Thiol-Dependent Recovery of Catalytic Activity from Oxidized Protein Tyrosine Phosphatases. Biochemistry, 2013, 52, 6412-6423.	2.5	47
62	On the Formation and Properties of Interstrand DNAâ \in "DNA Cross-Links Forged by Reaction of an Abasic Site with the Opposing Guanine Residue of 5â \in 2-CAp Sequences in Duplex DNA. Journal of the American Chemical Society, 2013, 135, 1015-1025.	13.7	80
63	Synthesis and characterization of a small analogue of the anticancer natural product leinamycin. Bioorganic and Medicinal Chemistry, 2013, 21, 235-241.	3.0	11
64	FaPy lesions and DNA mutations. Nature Chemical Biology, 2013, 9, 412-414.	8.0	8
65	On the Reaction Mechanism of Tirapazamine Reduction Chemistry: Unimolecular N–OH Homolysis, Stepwise Dehydration, or Triazene Ring-Opening. Chemical Research in Toxicology, 2012, 25, 634-645.	3.3	22
66	Hypoxia-Selective, Enzymatic Conversion of 6-Nitroquinoline into a Fluorescent Helicene: Pyrido[3,2- <i>f</i>)quinolino[6,5- <i>c</i>)cinnoline 3-Oxide. Journal of Organic Chemistry, 2012, 77, 3531-3537.	3.2	29
67	DNA cleavage induced by antitumor antibiotic leinamycin and its biological consequences. Bioorganic and Medicinal Chemistry, 2012, 20, 4413-4421.	3.0	8
68	DNA Strand Cleavage by the Phenazine Di- $\langle i \rangle$ N $\langle j \rangle$ -oxide Natural Product Myxin under Both Aerobic and Anaerobic Conditions. Chemical Research in Toxicology, 2012, 25, 197-206.	3.3	66
69	Electron and Spin-Density Analysis of Tirapazamine Reduction Chemistry. Chemical Research in Toxicology, 2012, 25, 620-633.	3.3	10
70	Transferring oxygen isotopes to 1,2,4-benzotriazine 1-oxides forming the corresponding 1,4-dioxides by using the HOFA·CH3CN complex. Tetrahedron, 2012, 68, 8942-8944.	1.9	5
71	Generation of DNA-Damaging Reactive Oxygen Species via the Autoxidation of Hydrogen Sulfide under Physiologically Relevant Conditions: Chemistry Relevant to Both the Genotoxic and Cell Signaling Properties of H ₂ S. Chemical Research in Toxicology, 2012, 25, 1609-1615.	3.3	43
72	The macrocycle of leinamycin imparts hydrolytic stability to the thiol-sensing 1,2-dithiolan-3-one 1-oxide unit of the natural product. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3791-3794.	2.2	9

#	Article	IF	CITATIONS
73	Thiol-Activated DNA Damage by α-Bromo-2-cyclopentenone. Chemical Research in Toxicology, 2011, 24, 217-228.	3.3	11
74	Kinetic Consequences of Replacing the Internucleotide Phosphorus Atoms in DNA with Arsenic. ACS Chemical Biology, 2011, 6, 127-130.	3.4	45
75	The Biological Buffer Bicarbonate/CO ₂ Potentiates H ₂ O ₂ -Mediated Inactivation of Protein Tyrosine Phosphatases. Journal of the American Chemical Society, 2011, 133, 15803-15805.	13.7	57
76	Noncovalent DNA Binding Drives DNA Alkylation by Leinamycin: Evidence That the <i>Z</i> , <i>E</i> -5-(Thiazol-4-yl)-penta-2,4-dienone Moiety of the Natural Product Serves as an Atypical DNA Intercalator. Journal of the American Chemical Society, 2011, 133, 17641-17651.	13.7	31
77	Redox Regulation of Protein Tyrosine Phosphatases: Structural and Chemical Aspects. Antioxidants and Redox Signaling, 2011, 15, 77-97.	5.4	149
78	Synthesis and Crystal Structure of the Azoxydichinyl Helicene, Pyrido[3,2-f]quinolino[6,5-c]cinnoline 5-Oxide Monohydrate. Journal of Chemical Crystallography, 2011, 41, 1712-1716.	1.1	4
79	Inactivation of protein tyrosine phosphatases by oltipraz and other cancer chemopreventive 1,2-dithiole-3-thiones. Bioorganic and Medicinal Chemistry, 2010, 18, 5945-5949.	3.0	11
80	Synthesis, Crystal Structure, and Rotational Energy Profile of 3-Cyclopropyl-1,2,4-benzotriazine 1,4-Di-N-oxide. Journal of Chemical Crystallography, 2010, 40, 624-629.	1.1	3
81	DNA strand cleaving properties and hypoxia-selective cytotoxicity of 7-chloro-2-thienylcarbonyl-3-trifluoromethylquinoxaline 1,4-dioxide. Bioorganic and Medicinal Chemistry, 2010, 18, 3125-3132.	3.0	23
82	Protection of a single-cysteine redox switch from oxidative destruction: On the functional role of sulfenyl amide formation in the redox-regulated enzyme PTP1B. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 444-447.	2.2	37
83	Characterization of DNA Damage Induced by a Natural Product Antitumor Antibiotic Leinamycin in Human Cancer Cells. Chemical Research in Toxicology, 2010, 23, 99-107.	3.3	60
84	DNA-catalyzed hydrolysis of DNA phosphodiesters. Nature Chemical Biology, 2009, 5, 710-711.	8.0	11
85	Biologically relevant chemical properties of peroxymonophosphate (O3POOH). Bioorganic and Medicinal Chemistry Letters, 2009, 19, 218-221.	2.2	18
86	An Overview of Chemical Processes That Damage Cellular DNA: Spontaneous Hydrolysis, Alkylation, and Reactions with Radicals. Chemical Research in Toxicology, 2009, 22, 1747-1760.	3.3	388
87	Initiation of DNA Strand Cleavage by 1,2,4-Benzotriazine 1,4-Dioxide Antitumor Agents: Mechanistic Insight from Studies of 3-Methyl-1,2,4-benzotriazine 1,4-Dioxide. Journal of the American Chemical Society, 2009, 131, 1015-1024.	13.7	54
88	Possible chemical mechanisms underlying the antitumor activity of S-deoxyleinamycin. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3076-3080.	2.2	14
89	Oxidative inactivation of protein tyrosine phosphatase 1B by organic hydroperoxides. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5856-5859.	2.2	23
90	Evidence for a Morin Type Intramolecular Cyclization of an Alkene with a Phenylsulfenic Acid Group in Neutral Aqueous Solution. Chemical Research in Toxicology, 2008, 21, 1368-1374.	3.3	3

#	Article	IF	Citations
91	Abstracts, American Chemical Society Division of Chemical Toxicology, 236th ACS National Meeting, Philadelphia, PA, August 17â^'21, 2008. Chemical Research in Toxicology, 2008, 21, 2433-2453.	3.3	8
92	Redox Regulation of Protein Tyrosine Phosphatase 1B by Peroxymonophosphate (O3POOH). Journal of the American Chemical Society, 2007, 129, 5320-5321.	13.7	36
93	Entering the leinamycin rearrangement via 2-(trimethylsilyl)ethyl sulfoxides. Organic and Biomolecular Chemistry, 2007, 5, 1595.	2.8	11
94	Abstracts, American Chemical Society Division of Chemical Toxicology, 234th ACS National Meeting, Boston, MA, August 19–23, 2007. Chemical Research in Toxicology, 2007, 20, 1989-2019.	3.3	2
95	Stabilities and Spin Distributions of Benzannulated Benzyl Radicals. Journal of Chemical Theory and Computation, 2007, 3, 1091-1099.	5.3	17
96	Interstrand Cross-Links Generated by Abasic Sites in Duplex DNA. Journal of the American Chemical Society, 2007, 129, 1852-1853.	13.7	125
97	Kinetics and Mechanism of Protein Tyrosine Phosphatase 1B Inactivation by Acrolein. Chemical Research in Toxicology, 2007, 20, 1315-1320.	3.3	74
98	DNA Strand Damage Product Analysis Provides Evidence That the Tumor Cell-Specific Cytotoxin Tirapazamine Produces Hydroxyl Radical and Acts as a Surrogate for O ₂ . Journal of the American Chemical Society, 2007, 129, 12870-12877.	13.7	54
99	Synthesis and Biological Evaluation of New 2-Arylcarbonyl-3-trifluoromethylquinoxaline 1,4-Di-N-oxide Derivatives and Their Reduced Analogues. Journal of Medicinal Chemistry, 2007, 50, 5485-5492.	6.4	53
100	Photochemical Electron Transfer Reactions of Tirapazamine $\hat{A}\P$. Photochemistry and Photobiology, 2007, 75, 339-345.	2.5	1
101	Noncovalent DNA Binding and the Mechanism of Oxidative DNA Damage by Fecapentaene-12. Chemical Research in Toxicology, 2006, 19, 117-121.	3.3	16
102	Getting under wraps: alkylating DNA in the nucleosome. Nature Chemical Biology, 2006, 2, 64-64.	8.0	5
103	Crystal structures of 3-methyl-1,2,4-benzotriazine 1-oxide and 2-oxide. Journal of Chemical Crystallography, 2006, 36, 557-561.	1.1	2
104	A fluorimetric assay for the spontaneous release of an N7-alkylguanine residue from duplex DNA. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2111-2113.	2.2	18
105	Generation of reactive oxygen species by a persulfide (BnSSH). Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3921-3924.	2.2	69
106	DNA Damage by Fasicularin. Journal of the American Chemical Society, 2005, 127, 15004-15005.	13.7	142
107	A Chemical Model for Redox Regulation of Protein Tyrosine Phosphatase 1B (PTP1B) Activity. Journal of the American Chemical Society, 2005, 127, 10830-10831.	13.7	83
108	Synthesis and noncovalent DNA-binding properties of thiazole derivatives related to leinamycin. Tetrahedron Letters, 2004, 45, 5711-5716.	1.4	24

#	Article	IF	Citations
109	Biologically Relevant Chemical Reactions of N7-Alkylguanine Residues in DNA. Chemical Research in Toxicology, 2004, 17, 839-856.	3.3	223
110	Enzyme-Activated, Hypoxia-Selective DNA Damage by 3-Amino-2-quinoxalinecarbonitrile 1,4-Di-N-oxide. Chemical Research in Toxicology, 2004, 17, 1399-1405.	3.3	53
111	Chemical Properties of the Leinamycinâ^'Guanine Adduct in DNA. Chemical Research in Toxicology, 2004, 17, 942-949.	3.3	40
112	A mass spectrometry study of tirapazamine and its metabolites: Insights into the mechanism of metabolic transformations and the characterization of reaction intermediates. Journal of the American Society for Mass Spectrometry, 2003, 14, 881-892.	2.8	34
113	Reaction of Thiols with 7-Methylbenzopentathiepin. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1349-1352.	2.2	47
114	Small Molecules That Mimic the Thiol-Triggered Alkylating Properties Seen in the Natural Product Leinamycin. Journal of the American Chemical Society, 2003, 125, 4996-4997.	13.7	43
115	Sequence Specificity of DNA Alkylation by the Antitumor Natural Product Leinamycin. Chemical Research in Toxicology, 2003, 16, 1539-1546.	3.3	38
116	DNA Base Damage by the Antitumor Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine). Journal of the American Chemical Society, 2003, 125, 11607-11615.	13.7	85
117	Photochemical Electron Transfer Reactions of Tirapazamine $\hat{A}\P$. Photochemistry and Photobiology, 2002, 75, 339.	2.5	22
118	Activation of Leinamycin by Thiols:  A Theoretical Study. Journal of Organic Chemistry, 2002, 67, 9054-9060.	3.2	33
119	Two (E,E)- and (Z,E)-thiazol-5-ylpenta-2,4-dienones. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, 0447-0449.	0.4	6
120	Oxidative DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine). Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2325-2329.	2.2	38
121	Thiol-Independent DNA Alkylation by Leinamycin. Journal of the American Chemical Society, 2001, 123, 2060-2061.	13.7	49
122	3-Amino-1,2,4-benzotriazine 4-Oxide:  Characterization of a New Metabolite Arising from Bioreductive Processing of the Antitumor Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine). Journal of Organic Chemistry, 2001, 66, 107-114.	3.2	62
123	DNA Alkylation by leinamycin can be triggered by cyanide and phosphines. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1511-1515.	2.2	19
124	Title is missing!. Journal of Chemical Crystallography, 2001, 31, 387-391.	1.1	5
125	Redox-activated, hypoxia-selective DNA cleavage by quinoxaline 1,4-di-N-oxide. Bioorganic and Medicinal Chemistry, 2001, 9, 2395-2401.	3.0	120
126	Thiol-dependent DNA cleavage by 3 H -1,2-benzodithiol-3-one 1,1-dioxide. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 885-889.	2.2	21

#	Article	IF	Citations
127	DNA Binding and Alkylation by the "Left Half―of Azinomycin B. Biochemistry, 2000, 39, 14968-14975.	2.5	66
128	Mechanisms of DNA Damage by Leinamycin. Chemical Research in Toxicology, 2000, 13, 953-956.	3.3	78
129	Title is missing!. Journal of Chemical Crystallography, 1999, 29, 1133-1136.	1.1	2
130	Covalent Modification of DNA by Natural Products. , 1999, , 491-552.		27
131	Reaction of the Hypoxia-Selective Antitumor Agent Tirapazamine with a C1â€-Radical in Single-Stranded and Double-Stranded DNA: The Drug and Its Metabolites Can Serve as Surrogates for Molecular Oxygen in Radical-Mediated DNA Damage Reactionsâ€. Biochemistry, 1999, 38, 14248-14255.	2.5	64
132	Photosensitization of Guanine-Specific DNA Damage by a Cyano-Substituted Quinoxaline Di-N-oxide. Chemical Research in Toxicology, 1999, 12, 1190-1194.	3.3	20
133	Crystal structure of 3H-1,2-benzodithiol-3-one 1-oxide. Journal of Chemical Crystallography, 1998, 28, 689-691.	1.1	4
134	Total Synthesis and DNA-Cleaving Properties of Thiarubrine C. Journal of Organic Chemistry, 1998, 63, 8644-8645.	3.2	35
135	DNA cleavage by 7-methylbenzopentathiepin: A simple analog of the antitumor antibiotic varacin. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 535-538.	2.2	57
136	Direct Evidence for Bimodal DNA Damage Induced by Tirapazamine. Chemical Research in Toxicology, 1998, 11, 1254-1257.	3.3	75
137	Photochemical DNA Cleavage by the Antitumor Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine, WIN 59075, SR4233). Journal of Organic Chemistry, 1998, 63, 10027-10030.	3.2	27
138	Synthesis and Structure of Functionalized Derivatives of the Cleft-Shaped Molecule Dithiosalicylide. Journal of Organic Chemistry, 1997, 62, 9361-9364.	3.2	16
139	Oxidative DNA Cleavage by the Antitumor Antibiotic Leinamycin and Simple 1,2-Dithiolan-3-one 1-Oxides:Â Evidence for Thiol-Dependent Conversion of Molecular Oxygen to DNA-Cleaving Oxygen Radicals Mediated by Polysulfides. Journal of the American Chemical Society, 1997, 119, 11691-11692.	13.7	91
140	Evidence for Thiol-Dependent Production of Oxygen Radicals by 4-Methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (Oltipraz) and 3H-1,2-Dithiole-3-thione:  Possible Relevance to the Anticarcinogenic Properties of 1,2-Dithiole-3-thiones. Chemical Research in Toxicology, 1997, 10, 296-301.	3.3	49
141	DNA Cleavage by the Antitumor Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (SR4233):  Evidence for Involvement of Hydroxyl Radical. Journal of the American Chemical Society, 1996, 118, 3380-3385.	13.7	130
142	1,2-Dithiolan-3-one 1-Oxides: A Class of Thiol-Activated DNA-Cleaving Agents That Are Structurally Related to the Natural Product Leinamycinâ€. Biochemistry, 1996, 35, 1768-1774.	2.5	70
143	Reactions of 3H-1,2-benzodithiol-3-one 1-oxide with amines and anilines. Tetrahedron Letters, 1996, 37, 5337-5340.	1.4	33
144	Novel syntheses of dithiosalicylide. Tetrahedron Letters, 1995, 36, 1391-1394.	1.4	12

#	Article	IF	CITATIONS
145	Reaction of n-Propanethiol with 3H-1,2-Benzodithiol-3-one 1-Oxide and 5,5-Dimethyl-1,2-dithiolan-3-one 1-Oxide: Studies Related to the Reaction of Antitumor Antibiotic Leinamycin with DNA. Journal of Organic Chemistry, 1995, 60, 3964-3966.	3.2	65
146	5-(Aminomethyl)-3-aryl-2-oxazolidinones. A novel class of mechanism-based inactivators of monoamine oxidase B. Journal of the American Chemical Society, 1990, 112, 9364-9372.	13.7	45
147	Model studies for the mechanism of inactivation of monoamine oxidase by 5-(aminomethyl)-3-aryl-2-oxazolidinones. Journal of the American Chemical Society, 1989, 111, 8891-8895.	13.7	19
148	The Chemical Reactions of DNA Damage and Degradation. , 0, , 333-378.		16