Peter Adler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4414562/publications.pdf

Version: 2024-02-01

21521 34076 14,769 119 52 114 citations h-index g-index papers 130 130 130 15155 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. Journal of Ecology, 2022, 110, 327-339.	1.9	25
2	LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .	1.1	4
3	A critical comparison of integral projection and matrix projection models for demographic analysis: Comment. Ecology, 2022, 103, e3605.	1.5	2
4	Nitrogen increases earlyâ€stage and slows lateâ€stage decomposition across diverse grasslands. Journal of Ecology, 2022, 110, 1376-1389.	1.9	12
5	Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 2022, 25, 754-765.	3.0	17
6	Water availability dictates how plant traits predict demographic rates. Ecology, 2022, 103, .	1.5	5
7	Toward a "modern coexistence theory―for the discrete and spatial. Ecological Monographs, 2022, 92,	2.4	6
8	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 2021, 102, e03218.	1.5	62
9	Agreement and Uncertainty Among Climate Change Impact Models: A Synthesis of Sagebrush Steppe Vegetation Projections. Rangeland Ecology and Management, 2021, 75, 119-129.	1.1	9
10	A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology, 2021, 102, e03336.	1.5	170
11	Relationships between plant–soil feedbacks and functional traits. Journal of Ecology, 2021, 109, 3411-3423.	1.9	29
12	Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecology Letters, 2021, 24, 2100-2112.	3.0	13
13	Biotic vs abiotic controls on temporal sensitivity of primary production to precipitation across North American drylands. New Phytologist, 2021, 231, 2150-2161.	3.5	18
14	Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 2021, 102, e03504.	1.5	14
15	The influence of lifeâ€history strategy on ecosystem sensitivity to resource fluctuations. Journal of Ecology, 2021, 109, 4081-4091.	1.9	1
16	Quadratâ€based monitoring of desert grassland vegetation at the Jornada Experimental Range, New Mexico, 1915–2016. Ecology, 2021, 102, e03530.	1.5	4
17	Hydrologic niches explain species coexistence and abundance in a shrub–steppe system. Journal of Ecology, 2020, 108, 998-1008.	1.9	30
18	Impacts of climate change on multiple use management of Bureau of Land Management land in the Intermountain West, USA. Ecosphere, 2020, 11, e03286.	1.0	14

#	Article	IF	Citations
19	Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 2020, 26, 7173-7185.	4.2	25
20	The Net Effect of Functional Traits on Fitness. Trends in Ecology and Evolution, 2020, 35, 1037-1047.	4.2	107
21	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	5.8	75
22	Technical Comment on Pande <i>et al</i> . (2020): Why invasion analysis is important for understanding coexistence. Ecology Letters, 2020, 23, 1721-1724.	3.0	17
23	Matching the forecast horizon with the relevant spatial and temporal processes and data sources. Ecography, 2020, 43, 1729-1739.	2.1	23
24	Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.	3.3	113
25	Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 2020, 11, 6036.	5.8	35
26	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	4.2	43
27	Climate and local environment structure asynchrony and the stability of primary production in grasslands. Global Ecology and Biogeography, 2020, 29, 1177-1188.	2.7	41
28	What processes must we understand to forecast regional-scale population dynamics?. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202219.	1,2	16
29	Increased soil temperature and decreased precipitation during early life stages constrain grass seedling recruitment in cold desert restoration. Journal of Applied Ecology, 2019, 56, 2609-2619.	1.9	42
30	Soil net nitrogen mineralisation across global grasslands. Nature Communications, 2019, 10, 4981.	5.8	57
31	Climate change, snow mold and the Bromus tectorum invasion: mixed evidence for release from cold weather pathogens. AoB PLANTS, 2019, 11, plz043.	1.2	5
32	Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecology Letters, 2019, 22, 936-945.	3.0	75
33	Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.	1.6	34
34	The plant diversity sampling design for The National Ecological Observatory Network. Ecosphere, 2019, 10, e02603.	1.0	19
35	An expanded modern coexistence theory for empirical applications. Ecology Letters, 2019, 22, 3-18.	3.0	147
36	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	3.4	97

#	Article	IF	Citations
37	Direct effects of warming increase woody plant abundance in a subarctic wetland. Ecology and Evolution, 2018, 8, 2868-2879.	0.8	10
38	Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology, 2018, 99, 822-831.	1.5	42
39	The response of big sagebrush (<i>Artemisia tridentata</i>) to interannual climate variation changes across its range. Ecology, 2018, 99, 1139-1149.	1.5	40
40	Survival rates indicate that correlations between communityâ€weighted mean traits and environments can be unreliable estimates of the adaptive value of traits. Ecology Letters, 2018, 21, 411-421.	3.0	62
41	Weak interspecific interactions in a sagebrush steppe? Conflicting evidence from observations and experiments. Ecology, 2018, 99, 1621-1632.	1.5	16
42	Multiâ€model comparison highlights consistency in predicted effect of warming on a semiâ€arid shrub. Global Change Biology, 2018, 24, 424-438.	4.2	47
43	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	3.4	172
44	Sizeâ€byâ€environment interactions: a neglected dimension of species' responses to environmental variation. Ecology Letters, 2018, 21, 1757-1770.	3.0	21
45	Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecology Letters, 2018, 21, 1319-1329.	3.0	283
46	Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. Ecology Letters, 2018, 21, 1364-1371.	3.0	38
47	Ecosystem functional response across precipitation extremes in a sagebrush steppe. PeerJ, 2018, 6, e4485.	0.9	11
48	Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology, 2017, 98, 971-981.	1.5	43
49	Do persistent rare species experience stronger negative frequency dependence than common species?. Global Ecology and Biogeography, 2017, 26, 513-523.	2.7	43
50	Water and nitrogen uptake are better associated with resource availability than root biomass. Ecosphere, 2017, 8, e01738.	1.0	59
51	The relationship between species richness and ecosystem variability is shaped by the mechanism of coexistence. Ecology Letters, 2017, 20, 958-968.	3.0	32
52	The effects of intransitive competition on coexistence. Ecology Letters, 2017, 20, 791-800.	3.0	90
53	Beyond pairwise mechanisms of species coexistence in complex communities. Nature, 2017, 546, 56-64.	13.7	544
54	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31, 1839-1846.	1.7	55

#	Article	IF	CITATIONS
55	Do we need demographic data to forecast plant population dynamics?. Methods in Ecology and Evolution, 2017, 8, 541-551.	2.2	32
56	Contrasting effects of precipitation manipulations in two Great Plains plant communities. Journal of Vegetation Science, 2017, 28, 238-249.	1.1	41
57	Forecasting climate change impacts on plant populations over large spatial extents. Ecosphere, 2016, 7, e01525.	1.0	35
58	How to quantify the temporal storage effect using simulations instead of math. Ecology Letters, 2016, 19, 1333-1342.	3.0	80
59	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	13.7	355
60	Direct effects dominate responses to climate perturbations in grassland plant communities. Nature Communications, 2016, 7, 11766.	5.8	34
61	Linking transient dynamics and life history to biological invasion success. Journal of Ecology, 2016, 104, 399-408.	1.9	46
62	Linking demography with drivers: climate and competition. Methods in Ecology and Evolution, 2016, 7, 171-183.	2.2	60
63	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	6.0	16
64	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	13.7	564
65	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	4.7	403
66	Influence of water Availability on Photosynthesis, Water Potential, Leaf \hat{l} (sup>13 (sup>C, and Phenology in Dominant C sub>4 (sub>Grasses In Kansas, USA. Transactions of the Kansas Academy of Science, 2015, 118, 173-193.	0.0	9
67	Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs, 2015, 85, 373-392.	2.4	137
68	Indirect Effects of Environmental Change in Resource Competition Models. American Naturalist, 2015, 186, 766-776.	1.0	17
69	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	5.8	143
70	Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18, 85-95.	3.0	612
71	Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 2015, 29, 592-599.	1.7	1,126
72	Anticipating changes in variability of grassland production due to increases in interannual precipitation variability. Ecosphere, 2014, 5, 1-15.	1.0	34

#	Article	IF	Citations
73	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	2.7	32
74	Causal networks clarify productivity–richness interrelations, bivariate plots do not. Functional Ecology, 2014, 28, 787-798.	1.7	106
75	Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.	13.7	409
76	Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution, 2014, 5, 65-73.	2,2	353
77	When should plant population models include age structure?. Journal of Ecology, 2014, 102, 531-543.	1.9	24
78	Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 740-745.	3.3	473
79	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	13.7	669
80	Life form influences survivorship patterns for 109 herbaceous perennials from six semiâ€arid ecosystems. Journal of Vegetation Science, 2014, 25, 947-954.	1.1	21
81	Warming, competition, and <i>Bromus tectorum</i> population growth across an elevation gradient. Ecosphere, 2014, 5, 1-34.	1.0	63
82	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	4.2	70
83	Traitâ€based tests of coexistence mechanisms. Ecology Letters, 2013, 16, 1294-1306.	3.0	422
84	Contrasting Effects of Precipitation Manipulations on Production in Two Sites within the Central Grassland Region, USA. Ecosystems, 2013, 16, 1039-1051.	1.6	64
85	Lifeâ€history constraints in grassland plant species: a growthâ€defence tradeâ€off is the norm. Ecology Letters, 2013, 16, 513-521.	3.0	165
86	Cover, density, and demographics of shortgrass steppe plants mapped 1997–2010 in permanent grazed and ungrazed quadrats. Ecology, 2013, 94, 1435-1435.	1.5	5
87	Can the past predict the future? Experimental tests of historically based population models. Global Change Biology, 2013, 19, 1793-1803.	4.2	7
88	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	6.0	30
89	Cover and density of semi-desert grassland plants in permanent quadrats mapped from 1915 to 1947. Ecology, 2012, 93, 1492-1492.	1.5	12
90	Mycorrhization rates of two grasses following alterations in moisture inputs in a southern mixed grass prairie. Applied Soil Ecology, 2012, 60, 56-60.	2.1	6

#	Article	IF	Citations
91	Strong selfâ€limitation promotes the persistence of rare species. Ecology, 2012, 93, 456-461.	1.5	69
92	Forecasting plant community impacts of climate variability and change: when do competitive interactions matter?. Journal of Ecology, 2012, 100, 478-487.	1.9	135
93	Sensitivity of mean annual primary production to precipitation. Global Change Biology, 2012, 18, 2246-2255.	4.2	201
94	Coexistence and Coevolution in Fluctuating Environments: Can the Storage Effect Evolve?. American Naturalist, 2011, 178, E76-E84.	1.0	27
95	Fourteen years of mapped, permanent quadrats in a northern mixed prairie, USA. Ecology, 2011, 92, 1703-1703.	1.5	23
96	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	3.0	88
97	Effects of precipitation on photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie. Environmental and Experimental Botany, 2011, 72, 223-231.	2.0	38
98	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	6.0	463
99	Climate influences the demography of three dominant sagebrush steppe plants. Ecology, 2011, 92, 75-85.	1.5	98
100	Can lifeâ€history traits predict the response of forb populations to changes in climate variability?. Journal of Ecology, 2010, 98, 209-217.	1.9	87
101	Coexistence of perennial plants: an embarrassment of niches. Ecology Letters, 2010, 13, 1019-1029.	3.0	230
102	Integrating spatial and temporal approaches to understanding species richness. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3633-3643.	1.8	81
103	Mapped quadrats in sagebrush steppe: longâ€ŧerm data for analyzing demographic rates and plant–plant interactions. Ecology, 2010, 91, 3427-3427.	1.5	29
104	Weak effect of climate variability on coexistence in a sagebrush steppe community. Ecology, 2009, 90, 3303-3312.	1.5	47
105	Direct and Indirect Effects of Climate Change on a Prairie Plant Community. PLoS ONE, 2009, 4, e6887.	1.1	51
106	On testing the role of niche differences in stabilizing coexistence. Functional Ecology, 2008, 22, 934-936.	1.7	26
107	Demography of perennial grassland plants: survival, life expectancy and life span. Journal of Ecology, 2008, 96, 1023-1032.	1.9	101
108	Environmental Variation, Stochastic Extinction, and Competitive Coexistence. American Naturalist, 2008, 172, E186-E195.	1.0	90

#	Article	IF	CITATIONS
109	THE INFLUENCE OF CLIMATE AND SPECIES COMPOSITION ON THE POPULATION DYNAMICS OF TEN PRAIRIE FORBS. Ecology, 2008, 89, 3049-3060.	1.5	91
110	LONG-TERM MAPPED QUADRATS FROM KANSAS PRAIRIE: DEMOGRAPHIC INFORMATION FOR HERBACEOUS PLANTS. Ecology, 2007, 88, 2673-2673.	1.5	38
111	Contrasting relationships between precipitation and species richness in space and time. Oikos, 2007, 116, 221-232.	1.2	183
112	A niche for neutrality. Ecology Letters, 2007, 10, 95-104.	3.0	887
113	Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12793-12798.	3.3	285
114	The development of forage production and utilization gradients around livestock watering points. Landscape Ecology, 2005, 20, 319-333.	1.9	54
115	PLANT TRAITS AND ECOSYSTEM GRAZING EFFECTS: COMPARISON OF U.S. SAGEBRUSH STEPPE AND PATAGONIAN STEPPE., 2005, 15, 774-792.		94
116	NEUTRAL MODELS FAIL TO REPRODUCE OBSERVED SPECIES–AREA AND SPECIES–TIME RELATIONSHIPS IN KANSAS GRASSLANDS. Ecology, 2004, 85, 1265-1272.	1.5	83
117	A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters, 2004, 7, 975-989.	3.0	1,149
118	Functional traits of graminoids in semi-arid steppes: a test of grazing histories. Journal of Applied Ecology, 2004, 41, 653-663.	1.9	145
119	The power of time: spatiotemporal scaling of species diversity. Ecology Letters, 2003, 6, 749-756.	3.0	178