Robert D Meade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/441432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological factors characterizing heat-vulnerable older adults: A narrative review. Environment International, 2020, 144, 105909.	4.8	116
2	Evidence for cyclooxygenaseâ€dependent sweating in young males during intermittent exercise in the heat. Journal of Physiology, 2014, 592, 5327-5339.	1.3	56
3	An Evaluation of the Physiological Strain Experienced by Electrical Utility Workers in North America. Journal of Occupational and Environmental Hygiene, 2015, 12, 708-720.	0.4	54
4	iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat. Journal of Applied Physiology, 2016, 120, 318-327.	1.2	45
5	Exploring the mechanisms underpinning sweating: the development of a specialized ventilated capsule for use with intradermal microdialysis. Physiological Reports, 2016, 4, e12738.	0.7	40
6	Cyclooxygenase inhibition does not alter methacholine-induced sweating. Journal of Applied Physiology, 2014, 117, 1055-1062.	1.2	38
7	Do the Threshold Limit Values for Work in Hot Conditions Adequately Protect Workers?. Medicine and Science in Sports and Exercise, 2016, 48, 1187-1196.	0.2	38
8	Time following ingestion does not influence the validity of telemetry pill measurements of core temperature during exercise-heat stress: The journal <i>Temperature</i> toolbox. Temperature, 2021, 8, 12-20.	1.7	35
9	The recommended Threshold Limit Values for heat exposure fail to maintain body core temperature within safe limits in older working adults. Journal of Occupational and Environmental Hygiene, 2017, 14, 703-711.	0.4	34
10	The physiological strain incurred during electrical utilities work over consecutive work shifts in hot environments: A case report. Journal of Occupational and Environmental Hygiene, 2017, 14, 986-994.	0.4	33
11	The physical demands of electrical utilities work in North America. Journal of Occupational and Environmental Hygiene, 2016, 13, 60-70.	0.4	30
12	Do nitric oxide synthase and cyclooxygenase contribute to the heat loss responses in older males exercising in the heat?. Journal of Physiology, 2015, 593, 3169-3180.	1.3	29
13	Intradermal administration of ATP augments methacholine-induced cutaneous vasodilation but not sweating in young males and females. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R912-R919.	0.9	28
14	Aging and human heat dissipation during exercise-heat stress: an update and future directions. Current Opinion in Physiology, 2019, 10, 219-225.	0.9	26
15	Mechanisms underlying the postexercise baroreceptor-mediated suppression of heat loss. Physiological Reports, 2014, 2, e12168.	0.7	25
16	Revisiting the influence of individual factors on heat exchange during exercise in dry heat using direct calorimetry. Experimental Physiology, 2019, 104, 1038-1050.	0.9	25
17	Local infusion of ascorbate augments NOâ€dependent cutaneous vasodilatation during intense exercise in the heat. Journal of Physiology, 2015, 593, 4055-4065.	1.3	22
18	Exercise Thermoregulation in Prepubertal Children: A Brief Methodological Review. Medicine and Science in Sports and Exercise, 2020, 52, 2412-2422.	0.2	22

Robert D Meade

#	Article	IF	CITATIONS
19	The interactive contributions of Na ⁺ /K ⁺ â€ATPase and nitric oxide synthase to sweating and cutaneous vasodilatation during exercise in the heat. Journal of Physiology, 2016, 594, 3453-3462.	1.3	20
20	Cumulative effects of successive workdays in the heat on thermoregulatory function in the aging worker. Temperature, 2018, 5, 293-295.	1.7	20
21	No effect of ascorbate on cutaneous vasodilation and sweating in older men and those with type 2 diabetes exercising in the heat. Physiological Reports, 2017, 5, e13238.	0.7	17
22	Individual variations in nitric oxide synthaseâ€dependent sweating in young and older males during exercise in the heat: role of aerobic power. Physiological Reports, 2017, 5, e13208.	0.7	16
23	Evidence for ageâ€related differences in heat acclimatisation responsiveness. Experimental Physiology, 2020, 105, 1491-1499.	0.9	15
24	The roles of the Na ⁺ /K ⁺ -ATPase, NKCC, and K ⁺ channels in regulating local sweating and cutaneous blood flow during exercise in humans inAvivo. Physiological Reports, 2016, 4, e13024.	0.7	14
25	Fluid Loss during Exercise-Heat Stress Reduces Cardiac Vagal Autonomic Modulation. Medicine and Science in Sports and Exercise, 2020, 52, 362-369.	0.2	13
26	Cutaneous blood flow during intradermal NO administration in young and older adults: roles for calcium-activated potassium channels and cyclooxygenase?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1081-R1087.	0.9	12
27	The roles of K _{Ca} , K _{ATP} , and K _V channels in regulating cutaneous vasodilation and sweating during exercise in the heat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R821-R827.	0.9	12
28	Are All Heat Loads Created Equal?. Medicine and Science in Sports and Exercise, 2017, 49, 1796-1804.	0.2	12
29	Interactive effects of age and hydration state on human thermoregulatory function during exercise in hotâ€dry conditions. Acta Physiologica, 2019, 226, e13226.	1.8	12
30	Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?. Journal of Applied Physiology, 2015, 118, 1145-1153.	1.2	11
31	Effect of aerobic fitness on the relation between age and wholeâ€body heat exchange during exerciseâ€heat stress: a retrospective analysis. Experimental Physiology, 2020, 105, 1550-1560.	0.9	11
32	Fluid replacement modulates oxidative stress- but not nitric oxide-mediated cutaneous vasodilation and sweating during prolonged exercise in the heat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R730-R739.	0.9	10
33	Cyclooxygenase-1 and -2 modulate sweating but not cutaneous vasodilation during exercise in the heat in young men. Physiological Reports, 2018, 6, e13844.	0.7	10
34	Type 2 diabetes specifically attenuates purinergic skin vasodilatation without affecting muscarinic and nicotinic skin vasodilatation and sweating. Experimental Physiology, 2018, 103, 212-221.	0.9	9
35	Local arginase inhibition does not modulate cutaneous vasodilation or sweating in young and older men during exercise. Journal of Applied Physiology, 2019, 126, 1129-1137.	1.2	9
36	Impaired autophagy following ex vivo heating at physiologically relevant temperatures in peripheral blood mononuclear cells from elderly adults. Journal of Thermal Biology, 2021, 95, 102790.	1.1	9

Robert D Meade

#	Article	IF	CITATIONS
37	Ageing attenuates the effect of extracellular hyperosmolality on wholeâ€body heat exchange during exerciseâ€heat stress. Journal of Physiology, 2020, 598, 5133-5148.	1.3	8
38	Regional variation in the reliability of sweat rate measured via the ventilated capsule technique during passive heating. Experimental Physiology, 2021, 106, 615-633.	0.9	8
39	Oxidative stress does not influence local sweat rate during highâ€intensity exercise. Experimental Physiology, 2018, 103, 172-178.	0.9	6
40	Myths and methodologies: Reliability of forearm cutaneous vasodilatation measured using laserâ€Doppler flowmetry during wholeâ€body passive heating. Experimental Physiology, 2021, 106, 634-652.	0.9	5
41	Greater fluid loss does not fully explain the divergent hemodynamic balance mediating postexercise hypotension in endurance-trained men. Journal of Applied Physiology, 2018, 124, 1264-1273.	1.2	4
42	Heat Exchange in Young and Older Men during Constant- and Variable-Intensity Work. Medicine and Science in Sports and Exercise, 2020, 52, 2628-2636.	0.2	4
43	Whole-body heat exchange in women during constant- and variable-intensity work in the heat. European Journal of Applied Physiology, 2020, 120, 2665-2675.	1.2	3
44	Revisiting regional variation in the ageâ€related reduction inÂsweat rate during passive heat stress. Physiological Reports, 2022, 10, e15250.	0.7	3
45	Effect of P2 receptor blockade on cutaneous vasodilation during rest and exercise in the heat in young men. Applied Physiology, Nutrition and Metabolism, 2018, 43, 312-315.	0.9	2
46	Intermittent sequential pneumatic compression does not enhance whole-body heat loss in elderly adults during extreme heat exposure. Applied Physiology, Nutrition and Metabolism, 2019, 44, 1383-1386.	0.9	2
47	Myths and methodologies: Reliability of nonâ€invasive estimates of cardiac autonomic modulation during wholeâ€body passive heating. Experimental Physiology, 2021, 106, 593-614.	0.9	2
48	Effect of extracellular hyperosmolality during normothermia and hyperthermia on the autophagic response in peripheral blood mononuclear cells from young men. Journal of Applied Physiology, 2022, 132, 995-1004.	1.2	2
49	The effect of exogenous activation of protease-activated receptor 2 on cutaneous vasodilatation and sweating in young males during rest and exercise in the heat. Temperature, 2018, 5, 257-266.	1.7	1
50	Exogenous Activation of Protease-Activated Receptor 2 Attenuates Cutaneous Vasodilatation and Sweating in Older Men Exercising in the Heat. Skin Pharmacology and Physiology, 2019, 32, 235-243.	1.1	1
51	The effect of extracellular hyperosmolality on sweat rate during metaboreflex activation in passively heated young men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, , .	0.9	1
52	The effect of acute intradermal administration of ascorbate on heat loss responses in older adults with uncomplicated controlled hypertension. Experimental Physiology, 2022, 107, 834-843.	0.9	1
53	Angiotensin II in human skin: an age-dependent role for core temperature regulation?. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1192-H1193.	1.5	0
54	Do Graduated Compression Garments Enhance Wholeâ€body Heat Loss During an Extreme Heat Exposure in Older Adults?. FASEB Journal, 2018, 32, 590.22.	0.2	0