
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4413310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dawn at Vesta: Testing the Protoplanetary Paradigm. Science, 2012, 336, 684-686.	6.0	422
2	Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 2015, 528, 241-244.	13.7	276
3	Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta. Science, 2012, 336, 697-700.	6.0	240
4	Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 2016, 536, 54-57.	13.7	240
5	Vesta's Shape and Morphology. Science, 2012, 336, 687-690.	6.0	222
6	The Violent Collisional History of Asteroid 4 Vesta. Science, 2012, 336, 690-694.	6.0	209
7	Elemental Mapping by Dawn Reveals Exogenic H in Vesta's Regolith. Science, 2012, 338, 242-246.	6.0	201
8	The Geologically Recent Giant Impact Basins at Vesta's South Pole. Science, 2012, 336, 694-697.	6.0	194
9	The Dawn Mission to Vesta and Ceres. Space Science Reviews, 2011, 163, 3-23.	3.7	184
10	Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 2016, 353, 1008-1010.	6.0	178
11	A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature, 2016, 537, 515-517.	13.7	169
12	Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 2017, 355, 55-59.	6.0	169
13	Color and Albedo Heterogeneity of Vesta from Dawn. Science, 2012, 336, 700-704.	6.0	166
14	Cryovolcanism on Ceres. Science, 2016, 353, .	6.0	164
15	Distribution of phyllosilicates on the surface of Ceres. Science, 2016, 353, .	6.0	159
16	Localized aliphatic organic material on the surface of Ceres. Science, 2017, 355, 719-722.	6.0	152
17	Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 2012, 491, 83-86.	13.7	151
18	Cratering on Ceres: Implications for its crust and evolution. Science, 2016, 353, .	6.0	135

#	Article	IF	CITATIONS
19	Detection of local H ₂ O exposed at the surface of Ceres. Science, 2016, 353, .	6.0	128
20	Dawn Mission to Vesta and Ceres. Earth, Moon and Planets, 2007, 101, 65-91.	0.3	125
21	Composition and structure of the shallow subsurface of Ceres revealed by craterÂmorphology. Nature Geoscience, 2016, 9, 538-542.	5.4	118
22	DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE <i>DAWN</i> MISSION. Astrophysical Journal Letters, 2012, 758, L36.	3.0	117
23	Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft. Journal of Geophysical Research E: Planets, 2017, 122, 2267-2293.	1.5	117
24	The interior structure of Ceres as revealed by surface topography. Earth and Planetary Science Letters, 2017, 476, 153-164.	1.8	117
25	Sublimation in bright spots on (1) Ceres. Nature, 2015, 528, 237-240.	13.7	116
26	High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 2013, 6, 303-307.	5.4	113
27	The geomorphology of Ceres. Science, 2016, 353, .	6.0	109
28	Dawn: A journey in space and time. Planetary and Space Science, 2004, 52, 465-489.	0.9	100
29	The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data. Icarus, 2014, 240, 103-117.	1.1	98
30	Pitted Terrain on Vesta and Implications for the Presence of Volatiles. Science, 2012, 338, 246-249.	6.0	91
31	Vesta's mineralogical composition as revealed by the visible and infrared spectrometer on Dawn. Meteoritics and Planetary Science, 2013, 48, 2166-2184.	0.7	87
32	The missing large impact craters on Ceres. Nature Communications, 2016, 7, 12257.	5.8	84
33	Geomorphological evidence for ground ice on dwarf planet Ceres. Nature Geoscience, 2017, 10, 338-343.	5.4	83
34	Nature, formation, and distribution of carbonates on Ceres. Science Advances, 2018, 4, e1701645.	4.7	83
35	The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planetary and Space Science, 2014, 103, 104-130.	0.9	80
36	Spectral analysis of Ahuna Mons from Dawn mission's visibleâ€infrared spectrometer. Geophysical Research Letters, 2017, 44, 97-104.	1.5	74

#	Article	IF	CITATIONS
37	Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. Icarus, 2017, 288, 201-225.	1.1	69
38	Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy and Astrophysics, 2017, 598, A130.	2.1	69
39	Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics and Planetary Science, 2013, 48, 2300-2315.	0.7	66
40	Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics and Planetary Science, 2018, 53, 1793-1804.	0.7	65
41	The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus, 2018, 299, 411-429.	1.1	65
42	Largeâ€scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 2012, 39, .	1.5	63
43	Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus, 2019, 320, 83-96.	1.1	63
44	The Dawn Gravity Investigation at Vesta and Ceres. Space Science Reviews, 2011, 163, 461-486.	3.7	62
45	An aqueously altered carbon-rich Ceres. Nature Astronomy, 2019, 3, 140-145.	4.2	62
46	Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 2020, 4, 786-793.	4.2	60
47	Resolved photometry of Vesta reveals physical properties of crater regolith. Planetary and Space Science, 2013, 85, 198-213.	0.9	59
48	Geologic mapping of Vesta. Planetary and Space Science, 2014, 103, 2-23.	0.9	55
49	Constraints on Vesta's interior structure using gravity and shape models from the Dawn mission. Icarus, 2014, 240, 146-160.	1.1	55
50	A Possible Brine Reservoir Beneath Occator Crater: Thermal and Compositional Evolution and Formation of the Cerealia Dome and Vinalia Faculae. Icarus, 2019, 320, 119-135.	1.1	55
51	Small crater populations on Vesta. Planetary and Space Science, 2014, 103, 96-103.	0.9	54
52	High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images. Planetary and Space Science, 2016, 129, 103-107.	0.9	54
53	Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR. Icarus, 2014, 240, 36-57.	1.1	52
54	The permanently shadowed regions of dwarf planet Ceres. Geophysical Research Letters, 2016, 43, 6783-6789.	1.5	52

#	Article	IF	CITATIONS
55	High resolution Vesta High Altitude Mapping Orbit (HAMO) Atlas derived from Dawn framing camera images. Planetary and Space Science, 2012, 73, 283-286.	0.9	51
56	High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus, 2019, 319, 812-827.	1.1	51
57	Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 2020, 4, 741-747.	4.2	50
58	Mass movement on Vesta at steep scarps and crater rims. Icarus, 2014, 244, 120-132.	1.1	49
59	Cryogenic flow features on Ceres: Implications for craterâ€related cryovolcanism. Geophysical Research Letters, 2016, 43, 11,994.	1.5	48
60	Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution. Geophysical Research Letters, 2017, 44, 6570-6578.	1.5	48
61	Neutron absorption constraints on the composition of 4 Vesta. Meteoritics and Planetary Science, 2013, 48, 2211-2236.	0.7	47
62	The formation and evolution of bright spots on Ceres. Icarus, 2019, 320, 188-201.	1.1	47
63	Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer. Icarus, 2019, 318, 22-41.	1.1	47
64	Vesta surface thermal properties map. Geophysical Research Letters, 2014, 41, 1438-1443.	1.5	46
65	The Dawn Topography Investigation. Space Science Reviews, 2011, 163, 487-510.	3.7	44
66	Variations in the amount of water ice on Ceres' surface suggest a seasonal water cycle. Science Advances, 2018, 4, eaao3757.	4.7	43
67	Ceres: Astrobiological Target and Possible Ocean World. Astrobiology, 2020, 20, 269-291.	1.5	43
68	Lobate and flow-like features on asteroid Vesta. Planetary and Space Science, 2014, 103, 24-35.	0.9	42
69	Geomorphological evidence for transient water flow on Vesta. Earth and Planetary Science Letters, 2015, 411, 151-163.	1.8	42
70	SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES. Astrophysical Journal Letters, 2016, 817, L22.	3.0	42
71	Slurry extrusion on Ceres from a convective mud-bearing mantle. Nature Geoscience, 2019, 12, 505-509.	5.4	42
72	Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus, 2019, 320, 39-48.	1.1	42

#	Article	IF	CITATIONS
73	Constraining the cratering chronology of Vesta. Planetary and Space Science, 2014, 103, 131-142.	0.9	41
74	The Dependence of the Cerean Exosphere on Solar Energetic Particle Events. Astrophysical Journal Letters, 2017, 838, L8.	3.0	41
75	The varied sources of faculae-forming brines in Ceres' Occator crater emplaced via hydrothermal brine effusion. Nature Communications, 2020, 11, 3680.	5.8	41
76	Conditions for Sublimating Water Ice to Supply Ceres' Exosphere. Journal of Geophysical Research E: Planets, 2017, 122, 1984-1995.	1.5	40
77	The various ages of Occator crater, Ceres: Results of a comprehensive synthesis approach. Icarus, 2019, 320, 60-82.	1.1	38
78	The geology of the Marcia quadrangle of asteroid Vesta: Assessing the effects of large, young craters. Icarus, 2014, 244, 74-88.	1.1	36
79	Timing of optical maturation of recently exposed material on Ceres. Geophysical Research Letters, 2016, 43, 11,987.	1.5	35
80	Asymmetric craters on Vesta: Impact on sloping surfaces. Planetary and Space Science, 2014, 103, 36-56.	0.9	34
81	Detection of serpentine in exogenic carbonaceous chondrite material on Vesta from Dawn FC data. Icarus, 2014, 239, 222-237.	1.1	34
82	Geologic constraints on the origin of red organicâ€rich material on Ceres. Meteoritics and Planetary Science, 2018, 53, 1983-1998.	0.7	34
83	Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 2019, 318, 42-55.	1.1	34
84	A Global Inventory of Iceâ€Related Morphological Features on Dwarf Planet Ceres: Implications for the Evolution and Current State of the Cryosphere. Journal of Geophysical Research E: Planets, 2019, 124, 1650-1689.	1.5	33
85	Compositional differences among Bright Spots on the Ceres surface. Icarus, 2019, 320, 202-212.	1.1	33
86	Recent cryovolcanic activity at Occator crater on Ceres. Nature Astronomy, 2020, 4, 794-801.	4.2	32
87	Ceres Survey Atlas derived from Dawn Framing Camera images. Planetary and Space Science, 2016, 121, 115-120.	0.9	31
88	Evidence for the Interior Evolution of Ceres from Geologic Analysis of Fractures. Geophysical Research Letters, 2017, 44, 9564-9572.	1.5	31
89	Massâ€wasting features and processes in Vesta's south polar basin Rheasilvia. Journal of Geophysical Research E: Planets, 2013, 118, 2279-2294.	1.5	30
90	Characteristics of organic matter on Ceres from VIR/Dawn high spatial resolution spectra. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2407-2421.	1.6	30

#	Article	lF	CITATIONS
91	Evidence of non-uniform crust of Ceres from Dawn's high-resolution gravity data. Nature Astronomy, 2020, 4, 748-755.	4.2	30
92	Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images. Icarus, 2014, 244, 41-59.	1.1	29
93	An investigation of the bluish material on Ceres. Geophysical Research Letters, 2017, 44, 1660-1668.	1.5	29
94	High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. Planetary and Space Science, 2017, 140, 74-79.	0.9	29
95	Ceres's obliquity history and its implications for the permanently shadowed regions. Geophysical Research Letters, 2017, 44, 2652-2661.	1.5	29
96	Ceres's global and localized mineralogical composition determined by Dawn's Visible and Infrared Spectrometer (<scp>VIR</scp>). Meteoritics and Planetary Science, 2018, 53, 1844-1865.	0.7	29
97	The geological nature of dark material on Vesta and implications for the subsurface structure. Icarus, 2014, 240, 3-19.	1.1	28
98	The geology of the Kerwan quadrangle of dwarf planet Ceres: Investigating Ceres' oldest, largest impact basin. Icarus, 2018, 316, 99-113.	1.1	28
99	The central pit and dome at Cerealia Facula bright deposit and floor deposits in Occator crater, Ceres: Morphology, comparisons and formation. Icarus, 2019, 320, 159-187.	1.1	28
100	Geomorphology and structural geology of Saturnalia Fossae and adjacent structures in the northern hemisphere of Vesta. Icarus, 2014, 244, 23-40.	1.1	27
101	Morphology and formation ages of mid-sized post-Rheasilvia craters – Geology of quadrangle Tuccia, Vesta. Icarus, 2014, 244, 133-157.	1.1	27
102	High-resolution Vesta Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. Planetary and Space Science, 2013, 85, 293-298.	0.9	26
103	The chronostratigraphy of protoplanet Vesta. Icarus, 2014, 244, 158-165.	1.1	26
104	The geology of the occator quadrangle of dwarf planet Ceres: Floor-fractured craters and other geomorphic evidence of cryomagmatism. Icarus, 2018, 316, 128-139.	1.1	26
105	Ceres' Occator crater and its faculae explored through geologic mapping. Icarus, 2019, 320, 7-23.	1.1	25
106	Geologic mapping of the Urvara and Yalode Quadrangles of Ceres. Icarus, 2018, 316, 167-190.	1.1	23
107	Mineralogy and temperature of crater Haulani on Ceres. Meteoritics and Planetary Science, 2018, 53, 1902-1924.	0.7	21
108	The Ac-5 (Fejokoo) quadrangle of Ceres: Geologic map and geomorphological evidence for ground ice mediated surface processes. Icarus, 2018, 316, 63-83.	1.1	21

#	Article	IF	CITATIONS
109	Ceres' Ezinu quadrangle: a heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater. Icarus, 2018, 316, 46-62.	1.1	21
110	Tectonic analysis of fracturing associated with occator crater. Icarus, 2019, 320, 49-59.	1.1	21
111	Spectrophotometric modeling and mapping of Ceres. Icarus, 2019, 322, 144-167.	1.1	21
112	Geologic mapping of the Ac-2 Coniraya quadrangle of Ceres from NASA's Dawn mission: Implications for a heterogeneously composed crust. Icarus, 2018, 316, 28-45.	1.1	20
113	Water Vapor Contribution to Ceres' Exosphere From Observed Surface Ice and Postulated Iceâ€Exposing Impacts. Journal of Geophysical Research E: Planets, 2019, 124, 61-75.	1.5	20
114	Mineralogical mapping of Coniraya quadrangle of the dwarf planet Ceres. Icarus, 2019, 318, 99-110.	1.1	20
115	Mineralogical and spectral analysis of Vesta's Gegania and Lucaria quadrangles and comparative analysis of their key features. Icarus, 2015, 259, 72-90.	1.1	19
116	The Putative Cerean Exosphere. Astrophysical Journal, 2017, 850, 85.	1.6	19
117	Ceres internal structure from geophysical constraints. Meteoritics and Planetary Science, 2018, 53, 1999-2007.	0.7	19
118	The unique geomorphology and structural geology of the Haulani crater of dwarf planet Ceres as revealed by geological mapping of equatorial quadrangle Ac-6 Haulani. Icarus, 2018, 316, 84-98.	1.1	19
119	Fluidized Appearing Ejecta on Ceres: Implications for the Mechanical Properties, Frictional Properties, and Composition of its Shallow Subsurface. Journal of Geophysical Research E: Planets, 2019, 124, 1819-1839.	1.5	19
120	Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process. Nature Communications, 2020, 11, 3679.	5.8	19
121	Harmonic and statistical analyses of the gravity and topography of Vesta. Icarus, 2014, 240, 161-173.	1.1	18
122	Synthesis of the special issue: The formation and evolution of Ceres' Occator crater. Icarus, 2019, 320, 213-225.	1.1	17
123	Photometry of Ceres and Occator faculae as inferred from VIR/Dawn data. Icarus, 2019, 320, 97-109.	1.1	17
124	Ceres' partial differentiation: undifferentiated crust mixing with a water-rich mantle. Astronomy and Astrophysics, 2020, 633, A117.	2.1	17
125	The Boulder Population of Asteroid 4 Vesta: Sizeâ€Frequency Distribution and Survival Time. Earth and Space Science, 2021, 8, e2019EA000941.	1.1	17
126	Dome formation on Ceres by solid-state flow analogous to terrestrial salt tectonics. Nature Geoscience, 2019, 12, 797-801.	5.4	16

#	Article	IF	CITATIONS
127	Landslides on Ceres: Inferences Into Ice Content and Layering in the Upper Crust. Journal of Geophysical Research E: Planets, 2019, 124, 1512-1524.	1.5	16
128	Mineralogical analysis of the Oppia quadrangle of asteroid (4) Vesta: Evidence for occurrence of moderate-reflectance hydrated minerals. Icarus, 2015, 259, 129-149.	1.1	15
129	Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan. Geophysical Research Letters, 2018, 45, 1297-1304.	1.5	15
130	Post-impact cryo-hydrologic formation of small mounds and hills in Ceres's Occator crater. Nature Geoscience, 2020, 13, 605-610.	5.4	15
131	Landslides on Ceres: Diversity and Geologic Context. Journal of Geophysical Research E: Planets, 2019, 124, 3329-3343.	1.5	14
132	Relict Ocean Worlds: Ceres. Space Science Reviews, 2020, 216, 1.	3.7	14
133	Compositional control on impact crater formation on mid-sized planetary bodies: Dawn at Ceres and Vesta, Cassini at Saturn. Icarus, 2021, 359, 114343.	1.1	14
134	Floorâ€Fractured Craters on Ceres and Implications for Interior Processes. Journal of Geophysical Research E: Planets, 2018, 123, 3188-3204.	1.5	13
135	Distinguishing the Origin of Asteroid (16) Psyche. Space Science Reviews, 2022, 218, 17.	3.7	13
136	An endogenic origin of cerean organics. Earth and Planetary Science Letters, 2020, 534, 116069.	1.8	12
137	Organic Material on Ceres: Insights from Visible and Infrared Space Observations. Life, 2021, 11, 9.	1.1	12
138	Global variations in regolith properties on asteroid Vesta from Dawn's lowâ€eltitude mapping orbit. Meteoritics and Planetary Science, 2016, 51, 2366-2386.	0.7	11
139	Mineralogical analysis of the Ac-H-6 Haulani quadrangle of the dwarf planet Ceres. Icarus, 2019, 318, 170-187.	1.1	11
140	Mineralogy of the Occator quadrangle. Icarus, 2019, 318, 205-211.	1.1	11
141	Ceres' impact craters – Relationships between surface composition and geology. Icarus, 2019, 318, 56-74.	1.1	11
142	The Coriolis effect on mass wasting during the Rheasilvia impact on asteroid Vesta. Geophysical Research Letters, 2016, 43, 12,340.	1.5	10
143	Dantu's mineralogical properties – A view into the composition of Ceres' crust. Meteoritics and Planetary Science, 2018, 53, 1866-1883.	0.7	10
144	The Brittle Boulders of Dwarf Planet Ceres. Planetary Science Journal, 2021, 2, 111.	1.5	10

#	Article	IF	CITATIONS
145	Spectral analysis of the quadrangles Av-13 and Av-14 on Vesta. Icarus, 2015, 259, 181-193.	1.1	9
146	Ceres' opposition effect observed by the Dawn framing camera. Astronomy and Astrophysics, 2018, 620, A201.	2.1	9
147	The spectral parameter maps of Ceres from NASA/DAWN VIR data. Icarus, 2019, 318, 14-21.	1.1	9
148	Ac-H-11 Sintana and Ac-H-12 Toharu quadrangles: Assessing the large and small scale heterogeneities of Ceres' surface. Icarus, 2019, 318, 230-240.	1.1	9
149	High Thermal Inertia Zones on Ceres From Dawn Data. Journal of Geophysical Research E: Planets, 2020, 125, e2018JE005733.	1.5	9
150	Concepts for the Future Exploration of Dwarf Planet Ceres' Habitability. Planetary Science Journal, 2022, 3, 41.	1.5	9
151	Origin and Dynamical Evolution of the Asteroid Belt. , 2022, , 227-249.		9
152	Mineralogical analysis of quadrangle Ac-H-10 Rongo on the dwarf planet Ceres. Icarus, 2019, 318, 212-229.	1.1	8
153	Mineralogical mapping of the Kerwan quadrangle on Ceres. Icarus, 2019, 318, 188-194.	1.1	8
154	Ceres observed at low phase angles by VIR-Dawn. Astronomy and Astrophysics, 2020, 634, A39.	2.1	8
155	The surface of (1) Ceres in visible light as seen by Dawn/VIR. Astronomy and Astrophysics, 2020, 642, A74.	2.1	8
156	Geologic mapping of the Ac-11 Sintana quadrangle: Assessing diverse crater morphologies. Icarus, 2018, 316, 154-166.	1.1	7
157	Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus. Geophysical Research Letters, 2019, 46, 80-88.	1.5	7
158	Introduction to the special issue: The formation and evolution of Ceres' Occator crater. Icarus, 2019, 320, 1-6.	1.1	7
159	Feasibility of characterizing subsurface brines on Ceres by electromagnetic sounding. Icarus, 2021, 362, 114424.	1.1	7
160	Global and local re-impact and velocity regime of ballistic ejecta of boulder craters on Ceres. Planetary and Space Science, 2018, 153, 142-156.	0.9	6
161	Geology of Ceres' North Pole quadrangle with Dawn FC imaging data. Icarus, 2018, 316, 14-27.	1.1	6
162	Ceres' spectral link to carbonaceous chondrites—Analysis of the dark background materials. Meteoritics and Planetary Science, 2018, 53, 1925-1945.	0.7	6

#	Article	IF	CITATIONS
163	The geology of the Nawish quadrangle of Ceres: The rim of an ancient basin. Icarus, 2018, 316, 114-127.	1.1	6
164	Spectral analysis of the Cerean geological unit crater central peak material as an indicator of subsurface mineral composition. Icarus, 2019, 318, 75-98.	1.1	6
165	Mineralogy of the Urvara–Yalode region on Ceres. Icarus, 2019, 318, 241-250.	1.1	6
166	The surface composition of Ceres' Ezinu quadrangle analyzed by the Dawn mission. Icarus, 2019, 318, 124-146.	1.1	6
167	A Long‣ived Planetesimal Dynamo Powered by Core Crystallization. Geophysical Research Letters, 2021, 48, e2020GL091917.	1.5	6
168	A young age of formation of Rheasilvia basin on Vesta from floor deformation patterns and crater counts. Meteoritics and Planetary Science, 2022, 57, 22-47.	0.7	6
169	Spectral investigation of quadrangle AC-H 3 of the dwarf planet Ceres – The region of impact crater Dantu. Icarus, 2019, 318, 111-123.	1.1	5
170	A Brief History of Spacecraft Missions to Asteroids and Protoplanets. , 2018, , 1-57.		4
171	Fracture geometry and statistics of Ceres' floor fractures. Planetary and Space Science, 2020, 187, 104955.	0.9	4
172	Science Drivers for the Future Exploration of Ceres: From Solar System Evolution to Ocean World Science. Planetary Science Journal, 2022, 3, 64.	1.5	4
173	The Psyche Topography and Geomorphology Investigation. Space Science Reviews, 2022, 218, 1.	3.7	4
174	Ringâ€Mold Craters on Ceres: Evidence for Shallow Subsurface Water Ice Sources. Geophysical Research Letters, 2018, 45, 8121-8128.	1.5	3
175	Asymmetric Craters on the Dwarf Planet Ceres—Results of Second Extended Mission Data Analysis. Geosciences (Switzerland), 2019, 9, 475.	1.0	3
176	THE FORMATION AND EVOLUTION OF BRIGHT SPOTS ON CERES. , 2017, , .		3
177	Maximum Energies of Trapped Particles Around Magnetized Planets and Small Bodies. Geophysical Research Letters, 2022, 49, .	1.5	3
178	Replenishment of Near‣urface Water Ice by Impacts Into Ceres' Volatileâ€Rich Crust: Observations by Dawn's Gamma Ray and Neutron Detector. Geophysical Research Letters, 2021, 48, e2021GL094223.	1.5	2
179	Ceres' Broadâ€5cale Surface Geomorphology Largely Due To Asymmetric Internal Convection. AGU Advances, 2022, 3, .	2.3	2
180	The mineralogy of Ceres' Nawish quadrangle. Icarus, 2019, 318, 195-204.	1.1	1

#	Article	IF	CITATIONS
181	Mineralogy mapping of the Ac-H-5 Fejokoo quadrangle of Ceres. Icarus, 2019, 318, 147-169.	1.1	1
182	Influence of Volatiles on Mass Wasting Processes on Vesta and Ceres. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006573.	1.5	1
183	The unique spectral and geomorphological characteristics of pitted impact deposits associated with Marcia crater on Vesta. Icarus, 2021, 369, 114633.	1.1	1
184	HIDDEN ICE: USING AGGREGATE SPATIAL AND PHYSICAL PROPERTIES OF LIKELY GROUND ICE DRIVEN FLOWS ON CERES TO BETTER UNDERSTAND ITS SURFACE COMPOSITION. , 2016, , .		1
185	MINERALOGICAL ANALYSIS OF THE QUADRANGLES AC-11 SINTANA AND AC-12 TOHARU ON THE DWARF PLANET CERES. , 2016, , .		1
186	Collisional Evolution of the Main Belt as Recorded by Vesta. , 2022, , 250-261.		1
187	Isotopic Constraints on the Formation of the Main Belt. , 2022, , 212-226.		1
188	Thermal inertia of Occator's faculae on Ceres. Planetary and Space Science, 2021, 205, 105285.	0.9	0
189	Formation of ejecta and dust pond deposits on asteroid Vesta. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006873.	1.5	0
190	Carbon and Organic Matter on Ceres. , 2022, , 121-133.		0
191	Geomorphology of Ceres. , 2022, , 143-158.		0
192	Ceres' Surface Composition. , 2022, , 105-120.		0
193	Ammonia on Ceres. , 2022, , 134-142.		0
194	Geophysics of Vesta and Ceres. , 2022, , 173-196.		0
195	Remote Observations of the Main Belt. , 2022, , 3-25.		0
196	Geomorphology of Vesta. , 2022, , 67-80.		0
197	Ceres' Internal Evolution. , 2022, , 159-172.		0
198	Exploring Vesta and Ceres. , 2022, , 26-38.		0