Francisco Rodriguez-Reinoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4412879/publications.pdf Version: 2024-02-01

	10986	4885
32,197	71	168
citations	h-index	g-index
372	372	27149
docs citations	times ranked	citing authors
	citations 372	32,197 71 citations h-index 372 372

#	Article	IF	CITATIONS
1	Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87, 1051-1069.	1.9	12,159
2	The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36, 159-175.	10.3	1,563
3	Role of chemical activation in the development of carbon porosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 15-25.	4.7	526
4	Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon, 1992, 30, 1111-1118.	10.3	518
5	The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon, 1995, 33, 15-23.	10.3	501
6	Use of nitrogen vs. carbon dioxide in the characterization of activated carbons. Langmuir, 1987, 3, 76-81.	3.5	463
7	Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 1991, 29, 999-1007.	10.3	453
8	Activated Carbon (Origins). , 2006, , 13-86.		377
9	Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon. Carbon, 1996, 34, 505-509.	10.3	318
10	Highâ€5urfaceâ€Area Carbon Molecular Sieves for Selective CO ₂ Adsorption. ChemSusChem, 2010, 3, 974-981.	6.8	316
11	Porosity in granular carbons activated with phosphoric acid. Carbon, 1995, 33, 1105-1113.	10.3	299
12	The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts. Journal of Catalysis, 1989, 115, 98-106.	6.2	260
13	A standard adsorption isotherm for the characterization of activated carbons. The Journal of Physical Chemistry, 1987, 91, 515-516.	2.9	242
14	Nanoporous Materials for the Onboard Storage of Natural Gas. Chemical Reviews, 2017, 117, 1796-1825.	47.7	241
15	Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide. Carbon, 2013, 52, 476-485.	10.3	236
16	The effect of the parent graphite on the structure of graphene oxide. Carbon, 2012, 50, 275-282.	10.3	188
17	Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon, 2014, 67, 230-235.	10.3	187
18	Methane hydrate formation in confined nanospace can surpass nature. Nature Communications, 2015, 6, 6432.	12.8	187

#	Article	IF	CITATIONS
19	Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. Journal of Materials Chemistry A, 2019, 7, 10104-10137.	10.3	187
20	Preparation of Platinum Supported on Pregraphitized Carbon Blacks. Langmuir, 1994, 10, 750-755.	3.5	181
21	High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position?. Chemistry of Materials, 2015, 27, 959-964.	6.7	178
22	Activated carbons from almond shells—I. Carbon, 1982, 20, 513-518.	10.3	175
23	The combined use of different approaches in the characterization of microporous carbons. Carbon, 1989, 27, 23-32.	10.3	168
24	Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chemical Communications, 2011, 47, 6840.	4.1	166
25	An activated carbon monolith as an electrode material for supercapacitors. Carbon, 2009, 47, 195-200.	10.3	158
26	Chemical versus physical activation of coconut shell: A comparative study. Microporous and Mesoporous Materials, 2012, 152, 163-171.	4.4	151
27	Effect of microporosity and oxygen surface groups of activated carbon in the adsorption of molecules of different polarity. The Journal of Physical Chemistry, 1992, 96, 2707-2713.	2.9	150
28	Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway. Carbon, 2015, 85, 147-158.	10.3	145
29	Adsorption of substituted phenols on activated carbon. Journal of Colloid and Interface Science, 1988, 124, 528-534.	9.4	137
30	Platinum catalysts supported on activated carbons I. Preparation and characterization. Journal of Catalysis, 1986, 99, 171-183.	6.2	135
31	Gas phase hydrogenation of crotonaldehyde over Pt/Activated carbon catalysts. Influence of the oxygen surface groups on the support. Applied Catalysis A: General, 1997, 150, 165-183.	4.3	134
32	Effect of Sn addition to Pt/CeO2–Al2O3 and Pt/Al2O3 catalysts: An XPS, 119Sn Mössbauer and microcalorimetry study. Journal of Catalysis, 2006, 241, 378-388.	6.2	134
33	Heat-Treated Carbon-Blacks as Supports for Platinum Catalysts. Journal of Catalysis, 1995, 154, 299-305.	6.2	132
34	Crotonaldehyde hydrogenation over bimetallic Ptî—,Sn catalysts supported on pregraphitized carbon black. Effect of the preparation method. Applied Catalysis A: General, 1996, 148, 63-80.	4.3	132
35	Improved Metal-Support Interaction in Pt/CeO2/SiO2 Catalysts after Zinc Addition. Journal of Catalysis, 2002, 210, 127-136.	6.2	131
36	Modification of the porous structure along the preparation of activated carbon monoliths with H3PO4 and ZnCl2. Microporous and Mesoporous Materials, 2007, 103, 29-34.	4.4	129

#	Article	IF	CITATIONS
37	Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon, 2016, 110, 138-147.	10.3	125
38	Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4K), carbon dioxide (273K) and argon (87.3K) adsorption in combination with immersion calorimetry. Carbon, 2012, 50, 3128-3133.	10.3	119
39	Semicokes from pitch pyrolysis: mechanisms and kinetics. Carbon, 1999, 37, 363-390.	10.3	114
40	Preparation and characterization of active carbons from olive stones. Carbon, 1980, 18, 413-418.	10.3	111
41	Characterization of microporous solids by immersion calorimetry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 151-165.	4.7	111
42	CO2 adsorption on carbon molecular sieves. Microporous and Mesoporous Materials, 2012, 164, 280-287.	4.4	108
43	Crotonaldehyde hydrogenation over bimetallic Ptî—,Sn catalysts supported on pregraphitized carbon black. Effect of the Sn/Pt atomic ratio. Applied Catalysis A: General, 1996, 136, 231-248.	4.3	105
44	Paving the way for methane hydrate formation on metal–organic frameworks (MOFs). Chemical Science, 2016, 7, 3658-3666.	7.4	103
45	Ethanol removal using activated carbon: Effect of porous structure and surface chemistry. Microporous and Mesoporous Materials, 2009, 120, 62-68.	4.4	102
46	Ammonia Removal Using Activated Carbons: Effect of the Surface Chemistry in Dry and Moist Conditions. Environmental Science & Technology, 2011, 45, 10605-10610.	10.0	102
47	Development of porosity in combined phosphoric acid-carbon dioxide activation. Carbon, 1996, 34, 457-462.	10.3	98
48	Hydrogenation of α, β unsaturated aldehydes over polycrystalline, (111) and (100) preferentially oriented Pt nanoparticles supported on carbon. Journal of Catalysis, 2008, 253, 159-166.	6.2	95
49	Thermodynamics of the high temperature adsorption of some permanent gases by porous carbons. Journal of the Chemical Society Faraday Transactions I, 1974, 70, 2154.	1.0	90
50	A Highâ€Volumetricâ€Capacity Cathode Based on Interconnected Closeâ€Packed Nâ€Doped Porous Carbon Nanospheres for Longâ€Life Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1701082.	19.5	88
51	Effect of carbon support and mean Pt particle size on hydrogen chemisorption by carbon-supported Pt ctalysts. Journal of Catalysis, 1991, 128, 397-404.	6.2	87
52	Preparation of granular activated carbons for adsorption of natural gas. Microporous and Mesoporous Materials, 2008, 109, 581-584.	4.4	86
53	Low-Pressure Hysteresis in Adsorption: An Artifact?. Journal of Physical Chemistry C, 2012, 116, 16652-16655.	3.1	86
54	Effect of steam activation on the porosity and chemical nature of activated carbons from Eucalyptus globulus and peach stones. Microporous Materials, 1997, 8, 123-130.	1.6	85

#	Article	IF	CITATIONS
55	Bimetallic PtSn/C catalysts promoted by ceria: Application in the nonoxidative dehydrogenation of isobutane. Journal of Catalysis, 2007, 246, 158-165.	6.2	85
56	Activation routes for high surface area graphene monoliths from graphene oxide colloids. Carbon, 2014, 76, 220-231.	10.3	85
57	Cluster-mediated filling of water vapor in intratube and interstitial nanospaces of single-wall carbon nanohorns. Chemical Physics Letters, 2002, 366, 463-468.	2.6	83
58	Vapor-Phase Hydrogenation of Crotonaldehyde on Titania-Supported Pt and PtSn SMSI Catalysts. Journal of Catalysis, 2002, 212, 94-103.	6.2	83
59	Carbon foam prepared by pyrolysis of olive stones under steam. Carbon, 2006, 44, 1448-1454.	10.3	82
60	CO2 activation of olive stones carbonized under different experimental conditions. Carbon, 1997, 35, 159-162.	10.3	80
61	Nearly Space-Filling Fractal Networks of Carbon Nanopores. Physical Review Letters, 2002, 88, 115502.	7.8	80
62	Synthesis of SiC from rice husks catalysed by iron, cobalt or nickel. Journal of Materials Science, 1996, 31, 779-784.	3.7	79
63	Preparation of activated carbon cloths from viscous rayon. Part I. Carbonization procedures. Carbon, 1999, 37, 1275-1283.	10.3	79
64	Pressure infiltration of Al–12wt.% Si–X (X=Cu, Ti, Mg) alloys into graphite particle preforms. Acta Materialia, 2006, 54, 1821-1831.	7.9	78
65	Evolution of surface area in a sepiolite as a function of acid and heat treatments. Clay Minerals, 1978, 13, 375-385.	0.6	77
66	Pyrolysis of petroleum residues. Carbon, 2000, 38, 535-546.	10.3	76
67	Sepiolite-based adsorbents as humidity controller. Applied Clay Science, 2001, 20, 111-118.	5.2	76
68	Phosphoric acid activated carbon discs for methane adsorption. Carbon, 2003, 41, 2113-2119.	10.3	76
69	Influence of Zn on the characteristics and catalytic behavior of TiO2-supported Pt catalysts. Journal of Catalysis, 2004, 223, 179-190.	6.2	76
70	Effect of Oxygen Surface Groups on the Immersion Enthalpy of Activated Carbons in Liquids of Different Polarity. Langmuir, 1997, 13, 2354-2358.	3.5	74
71	Controlled Opening of Single-Wall Carbon Nanohorns by Heat Treatment in Carbon Dioxide. Journal of Physical Chemistry B, 2003, 107, 4479-4484.	2.6	74
72	Steam activation of olive stone chars, development of porosity. Carbon, 1994, 32, 1407-1413.	10.3	73

#	Article	IF	CITATIONS
73	Adsorption–desorption of water vapor by natural and heat-treated sepiolite in ambient air. Applied Clay Science, 1999, 15, 367-380.	5.2	71
74	Adsorption of methane into ZnCl2-activated carbon derived discs. Microporous and Mesoporous Materials, 2004, 76, 185-191.	4.4	71
75	Effect of the support composition on the vapor-phase hydrogenation of crotonaldehyde over Pt/CexZr1â^'xO2 catalysts. Journal of Catalysis, 2006, 241, 45-55.	6.2	71
76	Preparation of activated carbon cloth from viscous rayon. Carbon, 2001, 39, 389-398.	10.3	70
77	Synthesis of activated carbon with highly developed "mesoporosity― Microporous and Mesoporous Materials, 2009, 117, 519-521.	4.4	70
78	Preparation of activated carbon from date pits: Effect of the activation agent and liquid phase oxidation. Journal of Analytical and Applied Pyrolysis, 2009, 86, 168-172.	5.5	68
79	Enhancing the catalytic performance of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support. Journal of Catalysis, 2008, 258, 52-60.	6.2	67
80	Preparation and characterization of CeO2 highly dispersed on activated carbon. Materials Research Bulletin, 2008, 43, 1850-1857.	5.2	66
81	Water adsorption in hydrophilic zeolites: experiment and simulation. Physical Chemistry Chemical Physics, 2013, 15, 17374.	2.8	66
82	Micro/Mesoporous Activated Carbons Derived from Polyaniline: Promising Candidates for CO ₂ Adsorption. Industrial & Engineering Chemistry Research, 2014, 53, 15398-15405.	3.7	66
83	A comparison of the porous texture of two CO2 activated botanic materials. Carbon, 1985, 23, 19-24.	10.3	65
84	Preparation of activated carbon cloths from viscous rayon. Part II: physical activation processes. Carbon, 2000, 38, 379-395.	10.3	63
85	Ultramicropore Characterization of Microporous Carbons by Low-Temperature Helium Adsorption. The Journal of Physical Chemistry, 1996, 100, 10331-10336.	2.9	62
86	Carbon-supported ionic liquids as innovative adsorbents for CO2 separation from synthetic flue-gas. Journal of Colloid and Interface Science, 2015, 448, 41-50.	9.4	62
87	Effect of Pore Morphology on the Adsorption of Methane/Hydrogen Mixtures on Carbon Micropores. Journal of Physical Chemistry C, 2012, 116, 11820-11829.	3.1	61
88	Modification of the catalytic behaviour of platinum by zinc in crotonaldehyde hydrogenation and iso-butane dehydrogenation. Applied Catalysis A: General, 2005, 292, 244-251.	4.3	60
89	High selectivity of TiC-CDC for CO2/N2 separation. Carbon, 2013, 59, 221-228.	10.3	60
90	Porosity development along the synthesis of carbons from metal carbides. Microporous and Mesoporous Materials, 2008, 113, 14-21.	4.4	59

#	Article	IF	CITATIONS
91	Delayed coking: Industrial and laboratory aspects. Carbon, 1998, 36, 105-116.	10.3	58
92	The combined effect of porosity and reactivity of the carbon preforms on the properties of SiC produced by reactive infiltration with liquid Si. Carbon, 2009, 47, 2200-2210.	10.3	58
93	Adsorption of CO2 and SO2 on activated carbons with a wide range of micropore size distribution. Carbon, 1995, 33, 1777-1782.	10.3	57
94	Controlling carbon microporosity: the structure of carbons obtained from different phenolic resin precursors. Carbon, 2002, 40, 743-749.	10.3	57
95	Catalytic oxidation of Fe(II) by activated carbon in the presence of oxygen Carbon, 2002, 40, 2827-2834.	10.3	56
96	Characterization of Activated Carbon. , 2006, , 143-242.		56
97	Production of binderless activated carbon monoliths by KOH activation of carbon mesophase materials. Carbon, 2008, 46, 384-386.	10.3	55
98	Platinum nanoparticles supported on titania as an efficient hydrogen-transfer catalyst. Journal of Catalysis, 2008, 260, 113-118.	6.2	55
99	Is There Any Microporosity in Ordered Mesoporous Silicas?. Langmuir, 2009, 25, 939-943.	3.5	55
100	A site energy distribution function from Toth isotherm for adsorption of gases on heterogeneous surfaces. Physical Chemistry Chemical Physics, 2011, 13, 5753.	2.8	55
101	The adsorptive properties of carbonised olive stones. Carbon, 1973, 11, 633-638.	10.3	54
102	Evaluation of the microporosity in activated carbons by n-nonane preadsorption. Journal of Colloid and Interface Science, 1985, 106, 315-323.	9.4	54
103	Crotonaldehyde hydrogenation over alumina- and silica-supported Pt–Sn catalysts of different composition. In situ DRIFT study. Physical Chemistry Chemical Physics, 2000, 2, 3063-3069.	2.8	54
104	Post-combustion CO2 adsorption on activated carbons with different textural properties. Microporous and Mesoporous Materials, 2015, 209, 157-164.	4.4	54
105	High saturation capacity of activated carbons prepared from mesophase pitch in the removal of volatile organic compounds. Carbon, 2010, 48, 548-556.	10.3	53
106	Porosity of activated carbons prepared from different lignocellulosic materials. Carbon, 1995, 33, 1175-1177.	10.3	52
107	Kinetic Restrictions in the Characterization of Narrow Microporosity in Carbon Materials. Journal of Physical Chemistry C, 2007, 111, 3803-3805.	3.1	52
108	Very high methane uptake on activated carbons prepared from mesophase pitch: A compromise between microporosity and bulk density. Carbon, 2015, 93, 11-21.	10.3	52

#	Article	IF	CITATIONS
109	Impregnation of activated carbon with chromium and copper salts: Effect of porosity and metal content. Carbon, 1994, 32, 1259-1265.	10.3	51
110	Textural and Surface Characterization of Cork-Based Sorbents for the Removal of Oil from Water. Industrial & Engineering Chemistry Research, 2013, 52, 16427-16435.	3.7	51
111	Effect of the presence of chlorine in bimetallic PtZn/CeO2 catalysts for the vapor-phase hydrogenation of crotonaldehyde. Applied Catalysis A: General, 2006, 304, 159-167.	4.3	50
112	The controlled reaction of active carbons with air at 350°C—II. Carbon, 1984, 22, 123-130.	10.3	49
113	Active carbons from almond shells as adsorbents in gas and liquid phases. Journal of Chemical Technology and Biotechnology, 1980, 30, 65-72.	0.2	49
114	Pt–Sn catalysts supported on highly-dispersed ceria on carbon. Journal of Molecular Catalysis A, 2007, 268, 227-234.	4.8	49
115	Hybrid isotherms for adsorption and capillary condensation of N2 at 77K on porous and non-porous materials. Chemical Engineering Journal, 2010, 162, 424-429.	12.7	49
116	Activation Processes (Chemical). , 2006, , 322-365.		48
117	Removal of BrO3 â^' from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry. Environmental Science and Pollution Research, 2015, 22, 15853-15865.	5.3	48
118	Carbon molecular sieves from Eucalyptus globulus charcoal. Microporous and Mesoporous Materials, 2002, 56, 139-145.	4.4	47
119	Pore size distributions derived from adsorption isotherms, immersion calorimetry, and isosteric heats: A comparative study. Carbon, 2016, 96, 1106-1113.	10.3	47
120	Activated carbons from almond shells—II. Carbon, 1984, 22, 13-18.	10.3	46
121	Correlation between Surface Areas and Micropore Volumes of Activated Carbons Obtained from Physical Adsorption and Immersion Calorimetry. Langmuir, 1995, 11, 2151-2155.	3.5	46
122	Pyrolysis of petroleum residues: I. Yields and product analyses. Carbon, 1999, 37, 1567-1582.	10.3	46
123	Effect of carbonâ€oxygen and carbonâ€sulphur surface complexes on the adsorption of mercuric chloride in aqueous solutions by activated carbons. Journal of Chemical Technology and Biotechnology, 1982, 32, 575-579.	0.2	46
124	A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of furfuryl alcohol in SBA-15 pore system. Carbon, 2013, 64, 252-261.	10.3	46
125	Kinetic studies of the oxidation of highly oriented pyrolytic graphites. Carbon, 1974, 12, 63-70.	10.3	45
126	Catalytic nanomedicine: A new field in antitumor treatment using supported platinum nanoparticles. In vitro DNA degradation and in vivo tests with C6 animal model on Wistar rats. European Journal of Medicinal Chemistry, 2010, 45, 1982-1990.	5.5	45

IF # ARTICLE CITATIONS Correlation of methane uptake with microporosity and surface area of chemically activated carbons. 4.4 44 Microporous and Mesoporous Materials, 2008, 115, 603-608. Porous carbon as support for iron and ruthenium catalysts. Fuel, 1984, 63, 1089-1094. 128 6.4 42 Vapour phase hydrogenation of crotonaldehyde over magnesia-supported platinum–tin catalysts. 129 2.8 Physical Chemistry Chemical Physics, 2001, 3, 1782-1788. Contribution to the Evaluation of Density of Methane Adsorbed on Activated Carbon. Journal of 130 2.6 42 Physical Chemistry B, 2005, 109, 20227-20231. Activation Processes (Thermal or Physical)., 2006, , 243-321. 42 Hydrogen adsorption on KOH activated carbons from mesophase pitch containing Si, B, Ti or Fe. 132 10.3 41 Carbon, 2010, 48, 636-644. Preparation of activated carbon cloths from viscous rayon. Carbon, 2000, 38, 397-406. Low Temperature Catalytic Adsorption of SO₂ on Activated Carbon. Journal of Physical 134 3.140 Chemistry C, 2008, 112, 15335-15340. Assessment of CO₂ Adsorption Capacity on Activated Carbons by a Combination of Batch 3.5 and Dynamic Tests. Langmuir, 2014, 30, 5840-5848. 136 Influence of the carbon material on the synthesis of silicon carbide. Carbon, 1999, 37, 1771-1778. 10.3 39 Ce promoted Pd–Nb catalysts for γ-valerolactone ring-opening and hydrogenation. Green Chemistry, 9.0 39 2012, 14, 3318. Ethanol steam reforming on Ni/Al2O3 catalysts: Effect of the addition of Zn and Pt. Journal of Colloid 138 9.4 39 and Interface Science, 2012, 383, 148-154. Gas phase hydrogenation of crotonaldehyde over platinum supported on oxidized carbon black. 10.3 38 Carbon, 1998, 36, 1011-1019. Pyrolysis of petroleum residues: analysis of semicokes by X-ray diffraction. Carbon, 1999, 37, 1627-1632. 140 10.3 38 A continuous site energy distribution function from Redlich–Peterson isotherm for adsorption on 141 38 2.6 heterogeneous surfaces. Chemical Physics Letters, 2010, 492, 187-192. Well-defined mesoporosity on lignocellulosic-derived activated carbons. Carbon, 2012, 50, 66-72. 142 10.3 38 The role of nitrogen and oxygen surface groups in the behavior of carbon-supported iron and ruthenium catalysts. Carbon, 1988, 26, 417-423. Influence of the atmosphere used in the carbonization of phosphoric acid impregnated peach stones. 144 10.3 37 Carbon, 1995, 33, 1180-1182.

#	Article	IF	CITATIONS
145	Porous structure of a sepiolite as deduced from the adsorption of N2, CO2, NH3 and H2O. Microporous and Mesoporous Materials, 2001, 47, 389-396.	4.4	37
146	Zn-modified MCM-41 as support for Pt catalysts. Applied Catalysis A: General, 2008, 351, 16-23.	4.3	36
147	Molecular Simulation of Hydrogen Physisorption and Chemisorption in Nanoporous Carbon Structures. Adsorption Science and Technology, 2011, 29, 799-817.	3.2	36
148	Platinum catalysts supported on graphitized carbon black—I. Carbon, 1982, 20, 177-184.	10.3	35
149	Platinum catalysts supported on activated carbons II. Isomerization and hydrogenolysis of n-butane. Journal of Catalysis, 1987, 107, 1-7.	6.2	35
150	Low-Temperature Catalytic Adsorption of NO on Activated Carbon Materials. Langmuir, 2007, 23, 12131-12137.	3.5	35
151	A Highly Reusable Carbonâ€Supported Platinum Catalyst for the Hydrogenâ€Transfer Reduction of Ketones. ChemCatChem, 2009, 1, 75-77.	3.7	35
152	Porosity Effect on Thermal Properties of Al-12 wt % Si/Graphite Composites. Materials, 2017, 10, 177.	2.9	35
153	Surface Complexes Formed during Simultaneous Catalytic Adsorption of NO and SO2 on Activated Carbons at Low Temperatures. Journal of Physical Chemistry C, 2007, 111, 1417-1423.	3.1	34
154	Multi-step loading of titania on mesoporous silica: Influence of the morphology and the porosity on the catalytic degradation of aqueous pollutants and VOCs. Applied Catalysis B: Environmental, 2008, 84, 125-132.	20.2	34
155	Mercury removal from aqueous solution by adsorption onÂactivated carbons prepared from olive stones. Adsorption, 2011, 17, 603-609.	3.0	34
156	Water gas shift reaction on carbon-supported Pt catalysts promoted by CeO2. Catalysis Today, 2012, 180, 19-24.	4.4	34
157	Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon. Carbon, 2017, 123, 299-301.	10.3	34
158	CO2 activation of olive stones carbonized under pressure. Carbon, 2001, 39, 320-323.	10.3	33
159	Influence of the preparation method on the catalytic behaviour of PtSn/TiO2 catalysts. Catalysis Today, 2007, 123, 235-244.	4.4	33
160	Infiltration of graphite preforms with Al–Si eutectic alloy and mercury. Scripta Materialia, 2007, 56, 991-994.	5.2	33
161	The role of carbon biotemplate density in mechanical properties of biomorphic SiC. Journal of the European Ceramic Society, 2009, 29, 465-472.	5.7	33
162	Anomaly of CH ₄ Molecular Assembly Confined in Single-Wall Carbon Nanohorn Spaces. Journal of the American Chemical Society, 2011, 133, 2022-2024.	13.7	33

#	Article	IF	CITATIONS
163	Non-porous reference carbon for N2 (77.4 K) and Ar (87.3 K) adsorption. Carbon, 2014, 66, 699-704.	10.3	33
164	The controlled reaction of active carbons with air at 350°C—l. Carbon, 1979, 17, 441-446.	10.3	32
165	Activation of a sepiolite with dilute solutions of HNO3 and subsequent heat treatments: II. Determination of surface acid centres. Clay Minerals, 1981, 16, 173-179.	0.6	32
166	An overview of methods for the characterization of activated carbons. Pure and Applied Chemistry, 1989, 61, 1859-1866.	1.9	32
167	Adsorption of NH3 and H2S on activated carbon and activated carbon–sepiolite pellets. Carbon, 2004, 42, 448-450.	10.3	32
168	Manufacture of Biomorphic SiC Components with Homogeneous Properties from Sawdust by Reactive Infiltration with Liquid Silicon. Journal of the American Ceramic Society, 2010, 93, 1003-1009.	3.8	32
169	Effects of infiltration pressure on mechanical properties of Al–12Si/graphite composites for piston engines. Composites Part B: Engineering, 2016, 91, 441-447.	12.0	32
170	XPS characterization and E. Coli DNA degradation using functionalized Cu/TiO2 nanobiocatalysts. Molecular Catalysis, 2018, 449, 62-71.	2.0	32
171	The Two-Stage Air-CO ₂ Activation in the Preparation of Activated Carbons. II. Characterization by Adsorption from Solution. Adsorption Science and Technology, 1984, 1, 223-234.	3.2	31
172	Title is missing!. Catalysis Letters, 2001, 74, 17-25.	2.6	31
173	Effect of the support, Al2O3 or SiO2, on the catalytic behaviour of Cr–ZnO promoted Pt catalysts in the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2011, 402, 50-58.	4.3	31
174	Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations. Applied Catalysis A: General, 2015, 507, 14-25.	4.3	31
175	Unusual flexibility of mesophase pitch-derived carbon materials: An approach to the synthesis of graphene. Carbon, 2017, 115, 539-545.	10.3	31
176	The effect of gasification by air (623 K) or CO2(1098 K) in the development of microporosity in activated carbons. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 1081.	1.0	30
177	Improvement of the selectivity to crotyl alcohol in the gas-phase hydrogenation of crotonaldehyde over platinum/activated carbon catalysts. Applied Catalysis A: General, 1995, 123, L1-L5.	4.3	30
178	Carbon molecular sieves from hardwood carbon pellets. The influence of carbonization temperature in gas separation properties. Microporous and Mesoporous Materials, 2005, 81, 161-167.	4.4	30
179	Pt/Ta2O5–ZrO2 catalysts for vapour phase selective hydrogenation of crotonaldehyde. Applied Catalysis A: General, 2008, 349, 165-169.	4.3	30
180	Effect of tin content and reduction temperature on the catalytic behaviour of PtSn/TiO2 catalysts in the vapour-phase hydrogenation of crotonaldehyde. Catalysis Today, 2008, 133-135, 35-41.	4.4	30

#	Article	IF	CITATIONS
181	Selective Hydrogenation of Cinnamaldehyde over (111) Preferentially Oriented Pt Particles Supported on Expanded Graphite. Catalysis Letters, 2009, 133, 267-272.	2.6	30
182	Guest Diffusion in Interpenetrating Networks of Micro- and Mesopores. Journal of the American Chemical Society, 2011, 133, 2437-2443.	13.7	30
183	Highlighting the Role of Activated Carbon Particle Size on CO ₂ Capture from Model Flue Gas. Industrial & Engineering Chemistry Research, 2013, 52, 12183-12191.	3.7	30
184	Textural Characterization of Micro- and Mesoporous Carbons Using Combined Gas Adsorption and <i>n</i> -Nonane Preadsorption. Langmuir, 2013, 29, 8133-8139.	3.5	30
185	Novel synthesis of a micro-mesoporous nitrogen-doped nanostructured carbon from polyaniline. Microporous and Mesoporous Materials, 2015, 218, 199-205.	4.4	30
186	Kinetics of the formation of graphite oxide. Carbon, 1975, 13, 461-464.	10.3	29
187	Effect of carbon properties on the preparation and activity of carbon-supported molybdenum sulfide catalysts. Carbon, 1993, 31, 1099-1105.	10.3	29
188	Controlled Gasification of Carbon and Pore Structure Development. , 1991, , 533-571.		29
189	Carbon molecular sieves as model active electrode materials in supercapacitors. Microporous and Mesoporous Materials, 2008, 110, 431-435.	4.4	28
190	Benefit of Microscopic Diffusion Measurement for the Characterization of Nanoporous Materials. Chemical Engineering and Technology, 2009, 32, 1494-1511.	1.5	28
191	Preparation of carbon molecular sieves by controlled oxidation treatments. Carbon, 2000, 38, 1889-1892.	10.3	27
192	Effect of the metal precursor on the properties of Ru/ZnO catalysts. Applied Catalysis A: General, 2010, 374, 221-227.	4.3	27
193	Activation of a sepiolite with dilute solutions of HNO3 and subsequent heat treatments: III. Development of porosity. Clay Minerals, 1981, 16, 315-323.	0.6	26
194	Influence of pressure variations on the formation and development of mesophase in a petroleum residue. Carbon, 1999, 37, 445-455.	10.3	26
195	Immersion Calorimetry as a Tool To Evaluate the Catalytic Performance of Titanosilicate Materials in the Epoxidation of Cyclohexene. Langmuir, 2011, 27, 3618-3625.	3.5	26
196	A comparison of different tests to evaluate the apparent surface area of activated carbons. Carbon, 1985, 23, 91-96.	10.3	25
197	POROUS CARBONS IN ADSORPTION AND CATALYSIS. , 2001, , 309-355.		25

#	Article	IF	CITATIONS
199	Production and Reference Material. , 2006, , 454-508.		25
200	Development of Porosity in a Char during Reaction with Steam or Supercritical Water. Journal of Physical Chemistry B, 2006, 110, 12360-12364.	2.6	25
201	Liquid phase removal of propanethiol by activated carbon: Effect of porosity and functionality. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 180-190.	4.7	25
202	Enhancing the catalytic performance of Pt/ZnO in the vapour phase hydrogenation of crotonaldehyde by the addition of Cr to the support. Catalysis Communications, 2008, 9, 1243-1246.	3.3	25
203	Chemically activated poly(furfuryl alcohol)-derived CMK-3 carbon catalysts for the oxidative dehydrogenation of ethylbenzene. Catalysis Today, 2014, 235, 201-209.	4.4	25
204	Hydrogenation of CO on carbon-supported iron catalysts prepared from iron penta-carbonyl. Applied Catalysis, 1986, 21, 251-261.	0.8	24
205	Self-sintering of carbon mesophase powders: effect of extraction/washing with solvents. Carbon, 1999, 37, 1662-1665.	10.3	24
206	Applicability of Activated Carbon. , 2006, , 383-453.		23
207	Carbon Molecular Sieves Prepared from Polymeric Precursors: Porous Structure and Hydrogen Adsorption Properties. Industrial & Engineering Chemistry Research, 2009, 48, 7125-7131.	3.7	23
208	Investigation on the Low-Temperature Transformations of Poly(furfuryl alcohol) Deposited on MCM-41. Langmuir, 2013, 29, 3045-3053.	3.5	23
209	Microscopic studies of oxidized highly oriented pyrolytic graphites. Carbon, 1974, 12, 269-279.	10.3	22
210	Reaction of glassy carbon with oxygen. Carbon, 1975, 13, 7-10.	10.3	22
211	The effect of inorganic constituents of the support on the characteristics of carbon-supported platinum catalysts. Applied Catalysis, 1985, 15, 293-300.	0.8	22
212	Influence of mesophase activation conditions on the specific capacitance of the resulting carbons. Journal of Power Sources, 2006, 156, 719-724.	7.8	22
213	Preparation of mesophase pitch doped with TiO2 or TiC particles. Journal of Analytical and Applied Pyrolysis, 2007, 80, 477-484.	5.5	22
214	High-Resolution N ₂ Adsorption Isotherms at 77.4 K: Critical Effect of the He Used During Calibration. Journal of Physical Chemistry C, 2013, 117, 16885-16889.	3.1	22
215	KOH activation of carbon materials obtained from the pyrolysis of ethylene tar at different temperatures. Fuel Processing Technology, 2013, 106, 402-407.	7.2	22
216	The Two-Stage Air–CO ₂ Activation in the Preparation of Activated Carbons. I. Characterization by Gas Adsorption. Adsorption Science and Technology, 1984, 1, 211-222.	3.2	21

#	Article	IF	CITATIONS
217	Spectroscopic and microcalorimetric study of a TiO ₂ -supported platinum catalyst. Physical Chemistry Chemical Physics, 2009, 11, 917-920.	2.8	21
218	Modification of activated carbon hydrophobicity by pyrolysis of propene. Journal of Analytical and Applied Pyrolysis, 2010, 89, 17-21.	5.5	21
219	Heat of adsorption and binding affinity for hydrogen on pitch-based activated carbons. Chemical Engineering Journal, 2011, 168, 972-978.	12.7	21
220	Oxidation of activated carbon with aqueous solution of sodium dichloroisocyanurate: Effect on ammonia adsorption. Microporous and Mesoporous Materials, 2011, 142, 577-584.	4.4	21
221	Effect of pore structure on the selectivity of carbon materials for the separation of CO2/H2 mixtures: new insights from molecular simulation. RSC Advances, 2012, 2, 9671.	3.6	21
222	Use of Eutectic Mixtures for Preparation of Monolithic Carbons with CO2-Adsorption and Gas-Separation Capabilities. Langmuir, 2014, 30, 12220-12228.	3.5	21
223	Free-standing compact cathodes for high volumetric and gravimetric capacity Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 19924-19933.	10.3	21
224	Preparation and Characterization of Activated Carbons. , 1986, , 601-642.		21
225	Synthesis of SiC and Si3N4: An overview. Advanced Materials, 1995, 7, 209-211.	21.0	20
226	Pyrolysis of petroleum residues. Carbon, 2001, 39, 61-71.	10.3	20
227	Infrared study of CO and 2-butenal co-adsorption on Zn modified Pt/CeO2–SiO2catalysts. Physical Chemistry Chemical Physics, 2003, 5, 208-216.	2.8	20
228	Controlled release of phenytoin for epilepsy treatment from titania and silica based materials. Materials Chemistry and Physics, 2011, 126, 922-929.	4.0	20
229	Co-adsorption of N ₂ in the presence of CH ₄ within carbon nanospaces: evidence from molecular simulations. Nanotechnology, 2013, 24, 035401.	2.6	20
230	Control of the pore size distribution and its spatial homogeneity in particulate activated carbon. Carbon, 2014, 78, 113-120.	10.3	20
231	Platinum catalysts supported on graphitized carbon black—II. Carbon, 1982, 20, 185-189.	10.3	19
232	Application of the isotherm subtraction and preadsorption methods to activated carbons. Carbon, 1986, 24, 255-259.	10.3	19
233	Application of a reference material to the characterization of porous carbons. Fuel, 1989, 68, 204-208.	6.4	19
234	Wetting and capillarity in the Sn/graphite system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 495, 187-191.	5.6	19

#	Article	IF	CITATIONS
235	Characterization of carbon materials with the help of NMR methods. Microporous and Mesoporous Materials, 2009, 120, 91-97.	4.4	19
236	Improved mechanical stability of HKUST-1 in confined nanospace. Chemical Communications, 2015, 51, 14191-14194.	4.1	19
237	Highâ€Performance of Gas Hydrates in Confined Nanospace for Reversible CH ₄ /CO ₂ Storage. Chemistry - A European Journal, 2016, 22, 10028-10035.	3.3	19
238	On mechanism of formation of SBA-15/furfuryl alcohol-derived mesoporous carbon replicas and its relationship with catalytic activity in oxidative dehydrogenation of ethylbenzene. Microporous and Mesoporous Materials, 2020, 299, 110118.	4.4	19
239	Adsorption of hydrocarbons on CO2-reacted activated carbons. Carbon, 1986, 24, 469-475.	10.3	18
240	Use of immersion calorimetry to evaluate the separation ability of carbon molecular sieves. Studies in Surface Science and Catalysis, 2000, 128, 303-312.	1.5	18
241	Preparation and characterization of carbon-supported Pt-CeO2 catalysts. Studies in Surface Science and Catalysis, 2000, 130, 1013-1018.	1.5	18
242	Pore filling in graphite particle compacts infiltrated with Al–12wt.%Si and Al–12wt.%Si–1wt.%Cu alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 495, 276-281.	5.6	18
243	A multi-method study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the activation pathway. Carbon, 2015, 85, 119-134.	10.3	18
244	Preparation of Carbon Molecular Sieves by Pyrolytic Carbon Deposition. Adsorption, 2005, 11, 663-667.	3.0	17
245	Pressure infiltration of Al-Si alloys into compacts made of carbon particles. Journal of Materials Science, 2005, 40, 2519-2523.	3.7	17
246	The effect of the cerium precursor and the carbon surface chemistry on the dispersion of ceria on activated carbon. Journal of Materials Science, 2008, 43, 1525-1531.	3.7	17
247	CO2 adsorption on crystalline graphitic nanostructures. Journal of CO2 Utilization, 2014, 5, 60-65.	6.8	17
248	Effect of support porosity in the preparation and catalytic activity for CO hydrogenation of carbon-supported Fe catalysts. Catalysis Today, 1990, 7, 287-298.	4.4	16
249	Preparation of activated carbon–sepiolite pellets. Carbon, 2001, 39, 776-779.	10.3	16
250	Neural network and principal component analysis for modeling of hydrogen adsorption isotherms on KOH activated pitch-based carbons containing different heteroatoms. Chemical Engineering Journal, 2010, 159, 272-279.	12.7	16
251	Effect of hydrogen reduction on the surface characteristics of carbon-supported iron and ruthenium catalysts. Applied Catalysis, 1986, 23, 299-307.	0.8	15
252	A Continuous Binding Site Affinity Distribution Function from the Freundlich Isotherm for the Supercritical Adsorption of Hydrogen on Activated Carbon. Journal of Physical Chemistry C, 2010, 114, 13759-13765.	3.1	15

#	Article	IF	CITATIONS
253	HKUST-1@ACM hybrids for adsorption applications: A systematic study of the synthesis conditions. Microporous and Mesoporous Materials, 2017, 237, 74-81.	4.4	15
254	Structural Flexibility in Activated Carbon Materials Prepared under Harsh Activation Conditions. Materials, 2019, 12, 1988.	2.9	15
255	Tailoring Low-Cost Granular Activated Carbons Intended for CO2 Adsorption. Frontiers in Chemistry, 2020, 8, 581133.	3.6	15
256	Development of porosity and surface heterogeneity upon air activation of graphitized carbon black. Carbon, 1981, 19, 65-70.	10.3	14
257	Activated Carbons Impregnated with Na ₂ S and H ₂ SO ₄ : Texture, Surface Chemistry and Application to Mercury Removal from Aqueous Solutions. Adsorption Science and Technology, 2014, 32, 101-115.	3.2	14
258	Immersion Calorimetry: Molecular Packing Effects in Micropores. ChemPhysChem, 2015, 16, 3984-3991.	2.1	14
259	Synthesis of β-SiAlON from clays: effect of starting materials. Journal of Materials Chemistry, 1994, 4, 1137-1141.	6.7	13
260	Adsorptivities of Extremely High Surface Area Activated Carbon Fibres for CH ₄ and H ₂ . Adsorption Science and Technology, 2009, 27, 877-881.	3.2	13
261	Control of the spatial homogeneity of pore surface chemistry in particulate activated carbon. Carbon, 2015, 95, 144-149.	10.3	13
262	Physicochemical properties and <i>in vivo</i> evaluation of Pt/TiO ₂ –SiO ₂ nanopowders. Nanomedicine, 2018, 13, 2171-2185.	3.3	13
263	Adsorption of Hydrocarbons on Air-Reacted Activated Carbons. I. Adsorption Isotherms. Adsorption Science and Technology, 1984, 1, 195-204.	3.2	12
264	Adsorption of Hydrocarbons on Air-Reacted Activated Carbons. II. High and Low Pressure Hysteresis. Adsorption Science and Technology, 1984, 1, 317-327.	3.2	12
265	Modification in Porous Texture and Oxygen Surface Groups of Activated Carbons by Oxidation. Studies in Surface Science and Catalysis, 1991, , 329-339.	1.5	12
266	Synthesis of a (MoSi2, Mo5Si3)/SiC Composite Using an In Situ Solid-State Displacement Reaction between Mo2C and Si Journal of the Ceramic Society of Japan, 2000, 108, 957-959.	1.3	12
267	Co-pyrolysis of an aromatic petroleum residue with triphenylsilane. Carbon, 2001, 39, 1001-1011.	10.3	12
268	High Temperature Adsorption of Hydrocarbons by Activated Carbons Prepared from Olive Stones. Adsorption Science and Technology, 1984, 1, 103-109.	3.2	11
269	Mo-promoted Fe/activated carbon catalysts for carbon monoxide hydrogenation. Journal of Molecular Catalysis, 1994, 90, 291-301.	1.2	11
270	Possible errors in microporosity in chemically activated carbon deduced from immersion calorimetry. Carbon, 2008, 46, 329-334.	10.3	11

#	Article	IF	CITATIONS
271	Influence of Water/Alkoxide Ratio in the Synthesis of Nanosized Solâ^'Gel Titania on the Release of Phenytoin. Langmuir, 2011, 27, 4004-4009.	3.5	11
272	Effect of nanoscale curvature sign and bundle structure on supercritical H2 and CH4 adsorptivity of single wall carbon nanotube. Adsorption, 2011, 17, 643-651.	3.0	11
273	The evidence of NMR diffusometry on pore space heterogeneity in activated carbon. Microporous and Mesoporous Materials, 2011, 141, 184-191.	4.4	11
274	Isosteric Heats of Adsorption of Gases and Vapors on a Microporous Carbonaceous Material. Journal of Chemical & Engineering Data, 2018, 63, 3107-3116.	1.9	11
275	Changes in surface homogeneity of a graphite upon gasification. Carbon, 1978, 16, 397-401.	10.3	10
276	Carbon-supported, [alkali metal] [Fe2Mn(CO)12]-derived catalysts. Applied Catalysis, 1989, 51, 93-112.	0.8	10
277	Parameters of microporous structure of carbonaceous adsorbents gasified with air or carbon dioxide. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 3125.	1.0	10
278	Synthesis of β-sialon from coals or natural graphite. Journal of Materials Research, 1995, 10, 727-735.	2.6	10
279	Modification of the sintering behaviour of mesophase powder from a petroleum residue. Carbon, 2002, 40, 2843-2853.	10.3	10
280	Characterization of Lightweight Graphite Based Composites Using X-Ray Microtomography. Advanced Engineering Materials, 2006, 8, 491-495.	3.5	10
281	Formation of COx-Free H2 and Cup-Stacked Carbon Nanotubes over Nano-Ni Dispersed Single Wall Carbon Nanohorns. Langmuir, 2012, 28, 7564-7571.	3.5	10
282	Biocompatibility and Biomechanical Effect of Single Wall Carbon Nanotubes Implanted in the Corneal Stroma: A Proof of Concept Investigation. Journal of Ophthalmology, 2016, 2016, 1-8.	1.3	10
283	The <i>n</i> -Nonane Preadsorption Method Applied to Activated Carbons. Adsorption Science and Technology, 1984, 1, 123-132.	3.2	9
284	An X-ray scattering investigation of the carbonization of olive stones. Carbon, 1998, 36, 67-70.	10.3	9
285	Synthesis of mixed disilicides/SiC composites by displacement reaction between metal carbides and silicon. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 380, 62-66.	5.6	9
286	Decreasing the infiltration threshold pressure of Al–12wt% Si into alumina particle compacts by Sn or Pb layers. Composites Science and Technology, 2008, 68, 75-79.	7.8	9
287	Evaluation of a mixed geometry model for the characterization ofÂactivated carbons. Adsorption, 2011, 17, 551-560.	3.0	9
288	Decoding gas-solid interaction effects on adsorption isotherm shape: I. Non-polar adsorptives. Microporous and Mesoporous Materials, 2018, 264, 76-83.	4.4	9

#	Article	IF	CITATIONS
289	Porosity in Carbons: Modeling. , 2006, , 87-142.		8
290	Diffusionâ€Barrierâ€Free Porous Carbon Monoliths as a New Form of Activated Carbon. ChemSusChem, 2012, 5, 2271-2277.	6.8	8
291	Release of copper complexes from a nanostructured sol–gel titania for cancer treatment. Journal of Materials Science, 2015, 50, 2410-2421.	3.7	8
292	A lattice-gas model for adsorption in microporous solids. Studies in Surface Science and Catalysis, 1994, 87, 573-581.	1.5	7
293	Influence of the surface chemistry of activated carbons on the ATRP catalysis of methyl methacrylate polymerization. Applied Catalysis A: General, 2011, 397, 225-233.	4.3	7
294	Oxidative Dehydrogenation of Ethylbenzene Over Poly(furfuryl alcohol)-Derived CMK-1 Carbon Replica. Catalysis Letters, 2016, 146, 1231-1241.	2.6	7
295	Hydrogenation of CO2 on Fe/carbon catalysts. Reaction Kinetics and Catalysis Letters, 1986, 31, 349-354.	0.6	6
296	Continuous versus static automatic mode of gas adsorption on porous carbons. Langmuir, 1991, 7, 350-353.	3.5	6
297	Hydrogen spillover in Pt-Sn catalysts supported on activated carbon cloth Studies in Surface Science and Catalysis, 2001, 138, 275-282.	1.5	6
298	Production of High-Strength Carbon Artifacts from Petroleum Residues:  Influence of the Solvent Used to Prepare Mesophase Powder. Energy & Fuels, 2002, 16, 1087-1094.	5.1	6
299	Adsorption on Heterogeneous Surfaces: Site Energy Distribution Functions from Fritz–Schlüender Isotherms. ChemPhysChem, 2010, 11, 2555-2560.	2.1	6
300	Influence of the porous structure of activated carbons in the activity of ATRP catalyst for methyl methacrylate polymerization. Catalysis Today, 2010, 150, 42-48.	4.4	6
301	Production of nanoTiC–graphite composites using Ti-doped self-sintering carbon mesophase powder. Journal of the European Ceramic Society, 2013, 33, 583-591.	5.7	6
302	Activated Carbon and Adsorption. , 2016, , .		6
303	POROUS CARBONS IN GAS SEPARATION AND STORAGE. , 2006, , 133-144.		6
304	The adsorption of N2 and Ar on samples of CdCl2 with different degree of surface homogeneity. Surface Science, 1982, 120, L431-L440.	1.9	5
305	â€ ⁻ Anomalous' increase in CO2 reactivity, relative to steam and air on acid treatment of coals. Fuel, 1986, 65, 1345-1348.	6.4	5
306	Effect of chromium addition on the behaviour of iron/activated carbon catalysts for carbon monoxide hydrogenation. Applied Catalysis, 1991, 77, 95-108.	0.8	5

#	Article	IF	CITATIONS
307	A new route for the synthesis of SiC–MoSi2ceramic composite materials. Chemical Communications, 1996, , 1667-1668.	4.1	5
308	SEM and TEM Images of Structures in Activated Carbons. , 2006, , 366-382.		5
309	Novel Carbon Materials for CO2 Adsorption. , 2012, , 583-603.		5
310	Preparation of high metal content nanoporous carbon. Fuel Processing Technology, 2013, 115, 115-121.	7.2	5
311	Decoding gas-solid interaction effects on adsorption isotherm shape: II. Polar adsorptives. Microporous and Mesoporous Materials, 2019, 278, 232-240.	4.4	5
312	A comparison of two reference materials for adsorption of nitrogen on activated carbons. Carbon, 1989, 27, 297-299.	10.3	4
313	Chemistry of the co-pyrolysis of an aromatic petroleum residue with a pyridine–borane complex. Carbon, 2003, 41, 549-561.	10.3	4
314	Effect of boron carbide particle addition on the thermomechanical behavior of carbon matrix silicon carbide particle composites. Carbon, 2003, 41, 1096-1099.	10.3	4
315	Effect of thermal treatments on the surface chemistry of oxidized activated carbons. Studies in Surface Science and Catalysis, 2007, , 129-136.	1.5	4
316	Preparation of graphite/nano-SiC composites by co-pyrolysis of a petroleum residue with phenylsilanes. Journal of Analytical and Applied Pyrolysis, 2008, 83, 137-144.	5.5	4
317	A site energy distribution function for the characterization of the continuous distribution of binding sites for gases on a heterogeneous surface. RSC Advances, 2012, 2, 784-788.	3.6	4
318	Transient rates in the reaction of CO2 with highly oriented Pyrolytic graphite. Carbon, 1975, 13, 81-82.	10.3	3
319	The crossing of N2 adsorption isotherms on CdCl2. Surface Science, 1982, 114, L7-L9.	1.9	3
320	A new working procedure to calculate pore size distributions. Journal of Catalysis, 1986, 99, 226-230.	6.2	3
321	The adsorption of N2 and CO2 on PAN carbons. Carbon, 1988, 26, 905-906.	10.3	3
322	Further Comments on Low Pressure Hysteresis in Activated Carbons: Effect of Preparation Method. Studies in Surface Science and Catalysis, 1991, 62, 419-427.	1.5	3
323	Pt-C Interaction in Catalyst Supported on a Carbon Black Subjected to Different Heat Treatments. Studies in Surface Science and Catalysis, 1993, , 2103-2106.	1.5	3
324	Sinterability enhancement in semicokes obtained by controlled pyrolysis of a petroleum residue. Journal of Analytical and Applied Pyrolysis, 2008, 82, 163-169.	5.5	3

#	Article	IF	CITATIONS
325	Carbon Dioxide Subtraction (CDS) Method Applied to A Wide Range of Porous Carbons. Studies in Surface Science and Catalysis, 1988, , 173-182.	1.5	2
326	Evaluation of Microporosity in Activated Carbons with High ASH (Cr2O3) CONTENT. Studies in Surface Science and Catalysis, 1991, , 449-457.	1.5	2
327	A new parameter relating the properties of semicokes and the resulting sintered carbons. Carbon, 1995, 33, 1182-1184.	10.3	2
328	METHANE DRY REFORMING OVER NI SUPPORTED ON PINE SAWDUST ACTIVATED CARBON: EFFECTS OF SUPPORT SURFACE PROPERTIES AND METAL LOADING. Quimica Nova, 2015, , .	0.3	2
329	Liquid-Phase Adsorption/Oxidation of Sulfur-Containing Species by Activated Carbon. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 107-118.	0.2	2
330	Microscopic studies of oxidized highly oriented pyrolytic graphite. Carbon, 1972, 10, 339.	10.3	1
331	Adsorption studies on an artificial graphite and its oxide. Carbon, 1975, 13, 553.	10.3	1
332	155. The reaction of activated carbons with carbon dioxide and its effect on their porous texture. Carbon, 1984, 22, 221.	10.3	1
333	177. The use of activated carbons as supports for platinum catalysts. Carbon, 1984, 22, 224.	10.3	1
334	Fabrication of ceramic/ceramic composites from aluminum/ceramic composites produced by pressure infiltration. Scripta Materialia, 1998, 38, 623-629.	5.2	1
335	Textural and chemical characterization of NaX zeolite exchanged with Zn(II) ions. Studies in Surface Science and Catalysis, 2002, 144, 107-114.	1.5	1
336	Reducing Threshold Pressure for Infiltration of Al-12Si Alloys into Carbon Particle Compacts by Placing a Thin Layer of Sn at the Infiltration Front. Materials Science Forum, 2007, 539-543, 785-790.	0.3	1
337	Molecular simulations to study the effect of pore geometry and structure on the adsorption of CH4/H2 mixtures in carbon pores. Nature Precedings, 2011, , .	0.1	1
338	Jorge (Giorgio) Zgrablich. Adsorption Science and Technology, 2011, 29, 423-424.	3.2	1
339	Comparison of Nanostructured Titania Matrices Obtained by Carbon Template and Sol–Gel Methods for Controlled Release of Fluoxetine. Journal of Nanoscience and Nanotechnology, 2011, 11, 5508-5514.	0.9	1
340	Characterization of Carbon Molecular Sieve Membranes Supported on Ceramic Tubes. Adsorption Science and Technology, 2013, 31, 233-247.	3.2	1
341	Adsorption of hydrogen on activated carbons prepared by thermal activation : Hydrogen storage. , 2019, , .		1
342	CO2 Adsorption in Activated Carbon Materials. Engineering Materials, 2021, , 139-152.	0.6	1

#	ARTICLE	IF	CITATIONS
343	Kinetic studies of the oxidation of highly oriented pyrolytic graphite. Carbon, 1972, 10, 338.	10.3	Ο
344	Changes in the porous structure of a natural based graphite upon gasification. Carbon, 1975, 13, 551-552.	10.3	0
345	The oxidation of pyrolytic graphite in oxygen. Carbon, 1975, 13, 553.	10.3	0
346	The crossing of gas adsorption isotherms at different temperatures in relation to the surface homogeneity of solids. Studies in Surface Science and Catalysis, 1982, , 479-488.	1.5	0
347	Seeking for a possible correlation between the existence of a "crossing point―of the adsorption isotherms and the state of the adsorbed phase for the Ar/graphite and Ar/boron nitride systems. Studies in Surface Science and Catalysis, 1982, , 495-501.	1.5	0
348	112. Molecular probe adsorption analysis of activated carbons. Carbon, 1982, 20, 137.	10.3	0
349	The crossing of N2 adsorption isotherms on CdCl2. Surface Science Letters, 1982, 114, L7-L9.	0.1	0
350	The adsorption of N2 and Ar on samples of CdCl2 with different degree of surface homogeneity. Surface Science Letters, 1982, 120, L431-L440.	0.1	0
351	176. Iron and ruthenium catalysts supported on Saran carbons. Carbon, 1984, 22, 223-224.	10.3	0
352	Comparative Studies of the Microporous Structure Parameters Evaluated from the Adsorption Isotherms of Various Adsorbates on Activated Carbons. Studies in Surface Science and Catalysis, 1991, 62, 469-476.	1.5	0
353	Characterization of Microporosity and Surface Homogeneity by The Study of Argon and Nitrogen Isotherm Crossing and Measurement of Differential Enthalpies of Adsorption. Studies in Surface Science and Catalysis, 1991, 62, 311-317.	1.5	0
354	Evolution of surface homogeneity in cadmium halides upon heat treatment. Langmuir, 1993, 9, 568-573.	3.5	0
355	EFFECT OF POROSITY AND FUNCTIONALITY OF ACTIVATED CARBON IN ADSORPTION. , 2007, , .		0
356	Editorial: Festschrift dedicated to Peter A. Thrower, Editor-in-Chief, 1972–2012. Carbon, 2012, 50, 3121-3122.	10.3	0
357	Professor Juan de Dios López-González (1924–2015). Carbon, 2015, 93, 997-998.	10.3	0
358	Preparation and investigation of active carbons based on furfural copolymer. Russian Chemical Bulletin, 2018, 67, 997-1001.	1.5	0
359	Brian McEnaney (1936–2018) – An appreciation. Carbon, 2019, 143, 564-565.	10.3	0