Zurong Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4411365/publications.pdf

Version: 2024-02-01

		201674	175258
53	11,265	27	52
papers	citations	h-index	g-index
53	53	53	10821
33	33	J.J	10021
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nanobelts of Semiconducting Oxides. Science, 2001, 291, 1947-1949.	12.6	5,624
2	Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation. Advanced Functional Materials, 2003 , 13 , $9-24$.	14.9	1,102
3	Comet 81P/Wild 2 Under a Microscope. Science, 2006, 314, 1711-1716.	12.6	848
4	Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires. Journal of the American Chemical Society, 2002, 124, 1817-1822.	13.7	351
5	Growth and Structure Evolution of Novel Tin Oxide Diskettes. Journal of the American Chemical Society, 2002, 124, 8673-8680.	13.7	325
6	Phase Transformation, Coalescence, and Twinning of Monodisperse FePt Nanocrystals. Nano Letters, 2001, 1, 443-447.	9.1	285
7	Gallium Oxide Nanoribbons and Nanosheets. Journal of Physical Chemistry B, 2002, 106, 902-904.	2.6	260
8	Side-by-side silicon carbide–silica biaxial nanowires: Synthesis, structure, and mechanical properties. Applied Physics Letters, 2000, 77, 3349-3351.	3.3	238
9	Ultra-long single crystalline nanoribbons of tin oxide. Solid State Communications, 2001, 118, 351-354.	1.9	217
10	Solution Phase Synthesis of Cu(OH)2Nanoribbons by Coordination Self-Assembly Using Cu2S Nanowires as Precursors. Nano Letters, 2002, 2, 1397-1401.	9.1	192
11	Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders. Journal of Physical Chemistry B, 2001, 105, 2507-2514.	2.6	182
12	Exchange-coupled FePt nanoparticle assembly. Applied Physics Letters, 2002, 80, 2583-2585.	3.3	169
13	Lead oxide nanobelts and phase transformation induced by electron beam irradiation. Applied Physics Letters, 2002, 80, 309-311.	3.3	164
14	Mechanical and electrostatic properties of carbon nanotubes and nanowires. Materials Science and Engineering C, 2001, 16, 3-10.	7.3	125
15	Shapes, multiple twins and surface structures of monodisperse FePt magnetic nanocrystals. Surface Science, 2002, 505, 325-335.	1.9	103
16	Polyhedral Shapes of Cobalt Nanocrystals and Their Effect on Ordered Nanocrystal Assembly. Advanced Materials, 2000, 12, 1944-1946.	21.0	102
17	Reactivity of Mount Simon Sandstone and the Eau Claire Shale Under CO ₂ Storage Conditions. Environmental Science & Technology, 2013, 47, 252-261.	10.0	102
18	Nano-Scale Mechanics of Nanotubes, Nanowires, and Nanobelts. Advanced Engineering Materials, 2001, 3, 657.	3.5	98

#	Article	IF	CITATIONS
19	Stabilization of Plutonium Nano-Colloids by Epitaxial Distortion on Mineral Surfaces. Environmental Science & Environmental Sc	10.0	90
20	Chemical and Mechanical Properties of Wellbore Cement Altered by CO ₂ -Rich Brine Using a Multianalytical Approach. Environmental Science & E	10.0	87
21	Synthesis, chemical ordering, and magnetic properties of FePtCu nanoparticle films. Journal of Applied Physics, 2003, 93, 7337-7339.	2.5	79
22	The crystal structure and growth direction of Cu2S nanowire arrays fabricated on a copper surface. Physical Chemistry Chemical Physics, 2001, 3, 3750-3753.	2.8	45
23	The origin of refractory minerals in comet 81P/Wild 2. Geochimica Et Cosmochimica Acta, 2009, 73, 7150-7161.	3.9	32
24	Structures of Oxide Nanobelts and Nanowires. Microscopy and Microanalysis, 2002, 8, 467-474.	0.4	28
25	Linkâ€up of 90° domain boundaries with interface dislocations in BaTiO3/LaAlO3. Applied Physics Letters, 1996, 68, 3093-3095.	3.3	27
26	Local ordering of oxygen vacancies in cubic zirconia (ZrO ₂) stabilized with yttria (Y ₂ O ₂) and magnesia (MgO) I. Electron diffuse scattering study. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 73, 415-430.	0.6	27
27	Sorption interactions of plutonium and europium with ordered mesoporous carbon. Journal of Materials Chemistry A, 2014, 2, 11209-11221.	10.3	27
28	Silica-based nanospheres, nanowires, nanosubstrates, nanotubes, and nanofiber arrays. Colloid and Polymer Science, 2003, 281, 673-685.	2.1	25
29	Interactions of Plutonium with Pseudomonas sp. Strain EPS-1W and Its Extracellular Polymeric Substances. Applied and Environmental Microbiology, 2016, 82, 7093-7101.	3.1	24
30	Applied focused ion beam techniques for sample preparation of astromaterials for integrated nanoanalysis. Meteoritics and Planetary Science, 2008, 43, 561-569.	1.6	22
31	Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy. Meteoritics and Planetary Science, 2011, 46, 1007-1024.	1.6	22
32	Illite dissolution kinetics from 100 to 280 \hat{A}° C and pH 3 to 9. Geochimica Et Cosmochimica Acta, 2017, 209, 9-23.	3.9	22
33	Synthesis and Thermoelectric Power of Nitrogen-Doped Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2003, 3, 99-103.	0.9	21
34	Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures. Review of Scientific Instruments, 2017, 88, 093506.	1.3	19
35	Local ordering of oxygen vacancies in cubic zirconia stabilized with yttria and magnesia II. Determination of local ordering parameters of oxygen vacancies. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 73, 1685-1698.	0.6	18
36	Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides. Scientific Reports, 2018, 8, 10451.	3.3	18

#	Article	IF	CITATIONS
37	Molecular beam epitaxy and interface reactions of layered GaSe growth on sapphire (0001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 2376-2380.	2.1	17
38	Experimental Investigation of Uranium Volatility during Vapor Condensation. Analytical Chemistry, 2020, 92, 6437-6445.	6.5	16
39	Nanocomposite (Nd,Dy)(Fe,Co,Nb,B)5.5/Â-Fe multilayer magnets with high performance. Journal Physics D: Applied Physics, 2003, 36, L63-L66.	2.8	15
40	Plutonium(IV) sorption to montmorillonite in the presence of organic matter. Journal of Environmental Radioactivity, 2015, 141, 90-96.	1.7	15
41	Neptunium(V) sorption to goethite at attomolar to micromolar concentrations. Journal of Colloid and Interface Science, 2013, 390, 176-182.	9.4	12
42	Hydrogen and oxygen stable isotope composition of water in metaschoepite mineralization on U3O8. Applied Geochemistry, 2020, 112, 104469.	3.0	12
43	Stability of plutonium oxide nanoparticles in the presence of montmorillonite and implications for colloid facilitated transport. Applied Geochemistry, 2020, 122, 104725.	3.0	11
44	Plutonium sorption and precipitation in the presence of goethite at 25 and 80 â—∢C. Radiochimica Acta, 2014, .	1.2	10
45	Relative impact of H2O and O2 in the oxidation of UO2 powders from 50 to 300°C. Journal of Nuclear Materials, 2017, 496, 353-361.	2.7	9
46	Stable isotope signatures of hydration water in secondary mineralization on UO2. Talanta, 2021, 226, 122096.	5.5	8
47	Onset of a Two-Dimensional Superconducting Phase in a Topological-Insulator–Normal-Metal <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Bi</mml:mi></mml:mrow><mml: Junction Fabricated. Physical Review Letters, 2018, 121, 037001.</mml: </mml:msub></mml:mrow></mml:mrow></mml:math>	7.8 mrow> <m< td=""><td>ıml:mn>1</td></m<>	ıml:mn>1
48	Hydrothermal Alteration of Nuclear Melt Glass, Colloid Formation, and Plutonium Mobilization at the Nevada National Security Site, U.S.A Environmental Science & Technology, 2019, 53, 7363-7370.	10.0	5
49	The growth of GaN on lithium gallate (LiGaO2) substrates for material integration. Journal of Electronic Materials, 2000, 29, 894-896.	2.2	3
50	Characterization of AlGaN/GaN structures on various substrates grown by radio frequency-plasma assisted molecular beam epitaxy. Journal of Electronic Materials, 2001, 30, 156-161.	2.2	3
51	Submicrometer spectromicroscopy of UO2 aged under high humidity conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	2.1	2
52	Bismuth-Loaded Polymer Scintillators for Gamma Ray Spectroscopy. Materials Research Society Symposia Proceedings, 2011, 1341, 1.	0.1	1
53	Metallic Magnetic Nanocrystals – Shapes, Self-assembly and Phase Transformation. Microscopy and Microanalysis, 2002, 8, 364-365.	0.4	O