Stéphanie Kermorgant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/441001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of MET in chemotherapy resistance. Oncogene, 2021, 40, 1927-1941.	5.9	54
2	Unconventional role of RAC1 in MET-driven anchorage-independent tumor growth. Molecular and Cellular Oncology, 2020, 7, 1803029.	0.7	1
3	A PI3K- and GTPase-independent Rac1-mTOR mechanism mediates MET-driven anchorage-independent cell growth but not migration. Science Signaling, 2020, 13, .	3.6	11
4	C-met mediates invasion and chemotherapy resistance in high grade serous ovarian cancer. Annals of Oncology, 2019, 30, vii20.	1.2	1
5	The Role of PI3K in Met Driven Cancer: A Recap. Frontiers in Molecular Biosciences, 2018, 5, 86.	3.5	29
6	Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion. Cell Adhesion and Migration, 2017, 11, 211-232.	2.7	20
7	Understanding and targeting Met signalling in bladder cancer. Annals of Oncology, 2017, 28, v16.	1.2	0
8	Beta 1-integrin–c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes. Nature Communications, 2016, 7, 11942.	12.8	84
9	The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Research, 2015, 17, 52.	5.0	146
10	Abstract B26: PI3K class I and mTOR regulate distinct steps in Met dependent tumorigenesis. , 2015, , .		0
11	Measuring the Role for Met Endosomal Signaling in Tumorigenesis. Methods in Enzymology, 2014, 535, 121-140.	1.0	4
12	Met endosomal signalling: In the right place, at the right time. International Journal of Biochemistry and Cell Biology, 2014, 49, 69-74.	2.8	62
13	Receptor tyrosine kinase c-Met controls the cytoskeleton from different endosomes via different pathways. Nature Communications, 2014, 5, 3907.	12.8	79
14	Câ€Met in invasive breast cancer. Cancer, 2014, 120, 163-171.	4.1	43
15	476: Understanding and targeting PI3K pathway downstream of Met oncogenic mutant. European Journal of Cancer, 2014, 50, S115.	2.8	0
16	Distinct c-Met activation mechanisms induce cell rounding or invasion through pathways involving integrins, RhoA and HIP1. Journal of Cell Science, 2014, 127, 1938-1952.	2.0	30
17	ERK2 but not ERK1 mediates HGF-induced motility in non small cell lung carcinoma cell lines. Journal of Cell Science, 2013, 126, 2381-91.	2.0	38
18	Comment on â€~High MET expression is an adverse prognostic factor in patients with triple-negative breast cancer'. British Journal of Cancer, 2013, 108, 2195-2196.	6.4	0

#	Article	IF	CITATIONS
19	RTKs as Models for Trafficking Regulation: c-Met/HGF Receptor-c-Met Signalling in Cancer—Location Counts. , 2013, , 261-277.		0
20	Anomalous inhibition of câ€Met by the kinesin inhibitor aurintricarboxylic acid. International Journal of Cancer, 2012, 130, 1060-1070.	5.1	4
21	A direct role for Met endocytosis in tumorigenesis. Nature Cell Biology, 2011, 13, 827-837.	10.3	208
22	Tumour angiogenesis is reduced in the Tc1 mouse model of Down's syndrome. Nature, 2010, 465, 813-817.	27.8	122
23	PKC and the control of localized signal dynamics. Nature Reviews Molecular Cell Biology, 2010, 11, 103-112.	37.0	407
24	Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. Journal of Cell Biology, 2008, 182, 855-863.	5.2	155
25	Leptin and Ob-Rb Receptor Isoform in the Human Digestive Tract during Fetal Development. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6177-6184.	3.6	45
26	PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal, 2004, 23, 3721-3734.	7.8	141
27	Protein Kinase C Controls Microtubule-based Traffic but Not Proteasomal Degradation of c-Met. Journal of Biological Chemistry, 2003, 278, 28921-28929.	3.4	56
28	Integrin–protein kinase C relationships. Biochemical Society Transactions, 2003, 31, 90-93.	3.4	28
29	Hepatocyte growth factor and c-Met in cervical intraepithelial neoplasia: overexpression of proteins associated with oncogenic human papillomavirus and human immunodeficiency virus. Clinical Cancer Research, 2003, 9, 273-84.	7.0	27
30	Antral mucosa expresses functional leptin receptors coupled to STAT-3 signaling, which is involved in the control of gastric secretions in the rat. Gastroenterology, 2001, 121, 1417-1427.	1.3	46
31	Glycine-Extended Gastrin Promotes the Invasiveness of Human Colon Cancer Cells. Biochemical and Biophysical Research Communications, 2001, 285, 136-141.	2.1	62
32	HGF upregulates and modifies subcellular distribution of proteins in colon cancer cell enterocytic differentiation. American Journal of Physiology - Renal Physiology, 2001, 281, G1068-G1080.	3.4	9
33	Hepatocyte growth factor induces colonic cancer cell invasiveness via enhanced motility and protease overproduction. Evidence for PI3 kinase and PKC involvement. Carcinogenesis, 2001, 22, 1035-1042.	2.8	113
34	Transforming Growth Factor-α and Epidermal Growth Factor Receptor in Colonic Mucosa in Active and Inactive Inflammatory Bowel Disease. Growth Factors, 2000, 18, 79-91.	1.7	23
35	Hepatocyte growth factor (HGF) activates some cellular events involved in enterocyte-like differentiation of colon cancer epithelial cells. Gastroenterology, 2000, 118, A559.	1.3	0
36	Glycine-extended gastrin-17 (G17-Gly) and amidated G17 (G17-NH2) induce the invasiveness of colon cancer epithelial NH2 cells in vitro. Gastroenterology, 2000, 118, A767.	1.3	0

#	Article	IF	CITATIONS
37	Hepatocyte growth factor (HCF) induces human colon cancer cell invasiveness via enhanced motility, protease overproduction, PI3 kinase- and PKC-dependent pathways. Gastroenterology, 2000, 118, A857.	1.3	1
38	Leptin secretion and leptin receptor in human stomach. Gastroenterology, 2000, 118, A34.	1.3	0
39	The stomach is a source of leptin. Nature, 1998, 394, 790-793.	27.8	1,021