
Carles VilÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4409771/publications.pdf Version: 2024-02-01

<u>CADLES VILÃ</u>

#	Article	IF	CITATIONS
1	New developments in the field of genomic technologies and their relevance to conservation management. Conservation Genetics, 2022, 23, 217-242.	1.5	26
2	Massive genome inversion drives coexistence of divergent morphs in common quails. Current Biology, 2022, 32, 462-469.e6.	3.9	25
3	Biased assessment of ongoing admixture using STRUCTURE in the absence of reference samples. Molecular Ecology Resources, 2021, 21, 677-689.	4.8	5
4	Phylogenomics and evolutionary history of Oreobates (Anura: Craugastoridae) Neotropical frogs along elevational gradients. Molecular Phylogenetics and Evolution, 2021, 161, 107167.	2.7	1
5	Automated genotyping of microsatellite loci from feces with high throughput sequences. PLoS ONE, 2021, 16, e0258906.	2.5	1
6	Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Molecular Phylogenetics and Evolution, 2020, 149, 106841.	2.7	18
7	Horses: Domestication. , 2020, , 5294-5296.		Ο
8	Towards high–throughput analyses of fecal samples from wildlife. Animal Biodiversity and Conservation, 2020, , 171-183.	0.5	2
9	Ecomorphological convergence in <i>Eleutherodactylus</i> frogs: a case of replicate radiations in the Caribbean. Ecology Letters, 2019, 22, 884-893.	6.4	37
10	From groups to communities in western lowland gorillas. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182019.	2.6	40
11	The genomic basis of adaptation to highâ€altitude habitats in the eastern honey bee (<i>Apis cerana</i>). Molecular Ecology, 2019, 28, 746-760.	3.9	30
12	Lethal management may hinder population recovery in Iberian wolves. Biodiversity and Conservation, 2019, 28, 415-432.	2.6	19
13	Mate guarding and male body condition shape male fertilization success and female mating system in the common quail. Animal Behaviour, 2018, 136, 107-117.	1.9	2
14	On the path to extinction: Inbreeding and admixture in a declining grey wolf population. Molecular Ecology, 2018, 27, 3599-3612.	3.9	46
15	Cryptic within cryptic: genetics, morphometrics, and bioacoustics delimitateÂa new species of Eleutherodactylus (Anura: Eleutherodactylidae) from Eastern Cuba. Zootaxa, 2017, 4221, zootaxa.4221.5.1.	0.5	6
16	Conservation genetics in the European Union – Biases, gaps and future directions. Biological Conservation, 2017, 209, 130-136.	4.1	26
17	Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9589-E9597.	7.1	140
18	Wolf population genetics in <scp>E</scp> urope: a systematic review, metaâ€analysis and suggestions for conservation and management. Biological Reviews, 2017, 92, 1601-1629.	10.4	131

#	Article	IF	CITATIONS
19	Similar genomic proportions of copy number variation within gray wolves and modern dog breeds inferred from whole genome sequencing. BMC Genomics, 2017, 18, 977.	2.8	24
20	A practical guide to build <i>de-novo</i> assemblies for single tissues of non-model organisms: the example of a Neotropical frog. PeerJ, 2017, 5, e3702.	2.0	16
21	Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus intermedius) at the El FrÃo Biological Station, Venezuela. PLoS ONE, 2016, 11, e0150245.	2.5	21
22	Whole mitochondrial genomes illuminate ancient intercontinental dispersals of grey wolves (<i>Canis lupus</i>). Journal of Biogeography, 2016, 43, 1728-1738.	3.0	57
23	Decades of population genetic research reveal the need for harmonization of molecular markers: the grey wolf <scp><i>C</i></scp> <i>anis lupus</i> as a case study. Mammal Review, 2016, 46, 44-59.	4.8	49
24	Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution; International Journal of Organic Evolution, 2016, 70, 1364-1375.	2.3	44
25	Worldwide patterns of genomic variation and admixture in gray wolves. Genome Research, 2016, 26, 163-173.	5.5	160
26	Postcopulatory sexual selection favors fertilization success of restocking hybrid quails over native Common quails (Coturnix coturnix). Journal of Ornithology, 2016, 157, 33-42.	1.1	6
27	Reply to Garner et al Trends in Ecology and Evolution, 2016, 31, 83-84.	8.7	24
28	Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 152-157.	7.1	265
29	Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs. PLoS Genetics, 2016, 12, e1005851.	3.5	77
30	Effect of the enzyme and PCR conditions on the quality of high-throughput DNA sequencing results. Scientific Reports, 2015, 5, 8056.	3.3	57
31	Fineâ€scale kin recognition in the absence of social familiarity in the Siberian jay, a monogamous bird species. Molecular Ecology, 2015, 24, 5726-5738.	3.9	23
32	A test of the integrated evolutionary speed hypothesis in a <scp>N</scp> eotropical amphibian radiation. Global Ecology and Biogeography, 2015, 24, 804-813.	5.8	10
33	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	8.7	469
34	Strong Artificial Selection in Domestic Mammals Did Not Result in an Increased Recombination Rate. Molecular Biology and Evolution, 2015, 32, 510-523.	8.9	34
35	A Simple Repeat Polymorphism in the MITF-M Promoter Is a Key Regulator of White Spotting in Dogs. PLoS ONE, 2014, 9, e104363.	2.5	50
36	Detecting slow introgression of invasive alleles in an extensively restocked game bird. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	18

#	Article	IF	CITATIONS
37	Genome Sequencing Highlights the Dynamic Early History of Dogs. PLoS Genetics, 2014, 10, e1004016.	3.5	481
38	Neotropical diversification seen through glassfrogs. Journal of Biogeography, 2014, 41, 66-80.	3.0	91
39	Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evolutionary Applications, 2014, 7, 984-998.	3.1	102
40	Decreased fitness of restocked hybrid quails prevents fast admixture with wild European quails. Biological Conservation, 2014, 171, 74-81.	4.1	18
41	Single-layer centrifugation separates spermatozoa from diploid cells in epididymal samples from gray wolves, Canis lupus (L.). Theriogenology, 2014, 82, 773-776.	2.1	8
42	Analysis of structural diversity in wolf-like canids reveals post-domestication variants. BMC Genomics, 2014, 15, 465.	2.8	16
43	Conservation Genetic Resources for Effective Species Survival (ConGRESS): Bridging the divide between conservation research and practice. Journal for Nature Conservation, 2013, 21, 433-437.	1.8	32
44	Bringing genetic diversity to the forefront of conservation policy and management. Conservation Genetics Resources, 2013, 5, 593-598.	0.8	145
45	Sample Planning Optimization Tool for conservation and population Genetics (<scp>SPOTG</scp>): a software for choosing the appropriate number of markers and samples. Methods in Ecology and Evolution, 2013, 4, 299-303.	5.2	66
46	Impact of hybridization with domestic dogs on the conservation of wild canids. , 2013, , 170-184.		21
47	Hibridación entre la codorniz común (Coturnix coturnix) y la codorniz de granja: estado de un problema de conservación. Ecosistemas, 2013, 22, 48-53.	0.4	6
48	Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proceedings of the United States of America, 2012, 109, 8878-8883.	7.1	412
49	Are Farm-Reared Quails for Game Restocking Really Common Quails (Coturnix coturnix)?: A Genetic Approach. PLoS ONE, 2012, 7, e39031.	2.5	29
50	Species diversity of Hyalinobatrachium glassfrogs (Amphibia: Centrolenidae) from the Guiana Shield, with the description of two new species. Zootaxa, 2011, 3132, 1.	0.5	36
51	Prdm9, a Major Determinant of Meiotic Recombination Hotspots, Is Not Functional in Dogs and Their Wild Relatives, Wolves and Coyotes. PLoS ONE, 2011, 6, e25498.	2.5	64
52	Correlates of species richness in the largest Neotropical amphibian radiation. Journal of Evolutionary Biology, 2011, 24, 931-942.	1.7	42
53	Signatures of demographic bottlenecks in European wolf populations. Conservation Genetics, 2011, 12, 701-712.	1.5	48
54	Vanishing native American dog lineages. BMC Evolutionary Biology, 2011, 11, 73.	3.2	31

#	Article	IF	CITATIONS
55	Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping. PLoS Genetics, 2011, 7, e1002316.	3.5	339
56	The role of humans in the diversification of a threatened island raptor. BMC Evolutionary Biology, 2010, 10, 384.	3.2	21
57	Noninvasive monitoring of wolves at the edge of their distribution and the cost of their conservation. Animal Conservation, 2010, 13, 157-161.	2.9	34
58	Phylogeographical analyses of domestic and wild yaks based on mitochondrial DNA: new data and reappraisal. Journal of Biogeography, 2010, 37, 2332-2344.	3.0	66
59	Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni. Zootaxa, 2009, 2100, 1-97.	0.5	152
60	Deciphering the products of evolution at the species level: the need for an integrative taxonomy. Zoologica Scripta, 2009, 38, 431-447.	1.7	146
61	Wolf or dog? Genetic identification of predators from saliva collected around bite wounds on prey. Conservation Genetics, 2008, 9, 1275-1279.	1.5	65
62	Phylogenetic relationships of glassfrogs (Centrolenidae) based on mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 2008, 48, 574-595.	2.7	83
63	Assortative mating and fragmentation within dog breeds. BMC Evolutionary Biology, 2008, 8, 28.	3.2	43
64	Barking up the wrong tree: Modern northern European dogs fail to explain their origin. BMC Evolutionary Biology, 2008, 8, 71.	3.2	22
65	Resurrection of Hyalinobatrachium orocostale and Notes on the Hyalinobatrachium orientale Species Complex (Anura: Centrolenidae). Herpetologica, 2008, 64, 472-484.	0.4	8
66	The Legacy of Domestication: Accumulation of Deleterious Mutations in the Dog Genome. Molecular Biology and Evolution, 2008, 25, 2331-2336.	8.9	129
67	Genetic analyses reveal independent domestication origins of Eurasian reindeer. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1849-1855.	2.6	99
68	Selection for tameness modulates the expression of heme related genes in silver foxes. Behavioral and Brain Functions, 2007, 3, 18.	3.3	8
69	A new species of Hyalinobatrachium (Centrolenidae: Anura) from SerranÃa de Perijá, Venezuela. Zootaxa, 2007, 1441, .	0.5	7
70	Transparent frogs show potential of natural world. Nature, 2007, 449, 972-972.	27.8	5
71	Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Molecular Ecology, 2007, 16, 4149-4170.	3.9	163
72	Sea ice occurrence predicts genetic isolation in the Arctic fox. Molecular Ecology, 2007, 16, 4241-4255.	3.9	77

Carles VilÃ

73Phylogeography of the white-tailed eagle, a generalist with large dispersal capacity. Journal of Biogeography, 2007, 34, 1193-1206.3.04574Megafaunal Extinctions and the Disappearance of a Specialized Wolf Ecomorph. Current Biology, 2007, 17, 1146-1150.3.918275Evaluation of methods for single hair DNA amplification. Conservation Genetics, 2007, 8, 977-981.1.5776Reliability of noninvasive genetic census of otters compared to field censuses. Conservation Genetics, 2007, 8, 1097-1107.1.13277Morphological and genetic sex identification of white-tailed eagle Haliaeetus albicilia nestlings.1.13278Bottlenecked but long-lwed: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biology Letters, 2006, 2, 316-319.3.910579Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Molecular Ecology, 2006, 15, 1561-1576.3.92180The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction? Molecular Ecology, 2006, 15, 1441-1453.3.98381Lybridization between white-headed ducks and introduced ruddy duck in Spain. Molecular Ecology, 2006, 7, 861-878.1.54283Unequal Contribution of Sexes in the Origin of Dog Breeds. Cenetics, 2006, 172, 1121-1128.2.96084Ebola Outbreak Killed 5000 Corillas. Science, 2006, 314, 1564-1564.12.6326
1417,1146-1150.14141414141414141475Evaluation of methods for single hair DNA amplification. Conservation Genetics, 2007, 8, 977-981.1.5776Reliability of noninvasive genetic census of otters compared to field censuses. Conservation Genetics, 2007, 8, 1097-1107.1.55977Morphological and genetic sex identification of white-tailed eagle Haliaeetus albicilla nestlings.1.13278Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biology Letters, 2006, 2, 316-319.2.314979Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Molecular Ecology, 2006, 15, 1561-1576.3.910580The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction?.3.98381Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Molecular Ecology, 2006, 16, 629-638.3.98382Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conservation1.54283Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128.2.960
76Reliability of noninvasive genetic census of otters compared to field censuses. Conservation Genetics, 2007, 8, 1097-1107.1.55977Morphological and genetic sex identification of white-tailed eagle Haliaeetus albicilla nestlings. Journal of Ornithology, 2007, 148, 435-442.1.13278Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biology Letters, 2006, 2, 316-319.2.314979Cenetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Molecular Ecology, 2006, 15, 1561-1576.3.910580The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction?. Molecular Ecology, 2006, 15, 1441-1453.3.92181Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Molecular Ecology, 2006, 16, 629-638.3.98382Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conservation Cenetics, 2006, 7, 861-878.1.54283Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128.2.960
162007, 8, 1097-1107.1.33977Morphological and genetic sex identification of white-tailed eagle Haliaeetus albicilla nestlings. journal of Ornithology, 2007, 148, 435-442.1.13278Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biology Letters, 2006, 2, 316-319.2.314979Cenetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Molecular Ecology, 2006, 15, 1561-1576.3.910580The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction?. Molecular Ecology, 2006, 15, 1441-1453.3.92181Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Molecular Ecology, 2006, 16, 629-638.3.98382Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conservation Cenetics, 2006, 7, 861-878.1.54283Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128.2.960
113278Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biology Letters, 2006, 2, 316-319.2.314979Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Molecular Ecology, 2006, 15, 1561-1576.3.910580The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction?. Molecular Ecology, 2006, 15, 1441-1453.3.92181Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Molecular Ecology, 2006, 16, 629-638.3.98382Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conservation Genetics, 2006, 7, 861-878.1.54283Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128.2.960
73population decline. Biology Letters, 2006, 2, 316-319.2.314979Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Molecular Ecology, 2006, 15, 1561-1576.3.910580The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction?. Molecular Ecology, 2006, 15, 1441-1453.3.92181Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Molecular Ecology, 2006, 16, 629-638.3.98382Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conservation Genetics, 2006, 7, 861-878.1.54283Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128.2.960
79Finnish wolf population. Molecular Ecology, 2006, 15, 1561-1576.3.910580The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction?. Molecular Ecology, 2006, 15, 1441-1453.3.92181Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Molecular Ecology, 2006, 16, 629-638.3.98382Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conservation Genetics, 2006, 7, 861-878.1.54283Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128.2.960
80Molecular Ecology, 2006, 15, 1441-1453.3.92181Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Molecular Ecology, 2006, 16, 629-638.3.98382Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conservation Genetics, 2006, 7, 861-878.1.54283Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128.2.960
812006, 16, 629-638.3.98382Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conservation Genetics, 2006, 7, 861-878.1.54283Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128.2.960
82 Genetics, 2006, 7, 861-878. 1.5 42 83 Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128. 2.9 60
84 Ebola Outbreak Killed 5000 Corillas Science 2006 314 1564-1564
0-7 Looid Outbreak Kined 5000 dominas. Science, 2000, 51-1, 150-150-7. 12.0 520
 Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome 5.5 163 Research, 2006, 16, 990-994.
 Microsatellite markers for two stifftail ducks: the white-headed duck, Oxyura leucocephala, and the 1.7 11
87 Selection for tameness has changed brain gene expression in silver foxes. Current Biology, 2005, 15, R915-R916.
 Genes of domestic mammals augmented by backcrossing with wild ancestors. Trends in Genetics, 2005, 21, 214-218. 6.7 121
89DISCORDANT PATTERNS OF MORPHOLOGICAL VARIATION IN GENETICALLY DIVERGENT POPULATIONS OF ORNATE SHREWS (SOREX ORNATUS). Journal of Mammalogy, 2004, 85, 886-896.1.315

90 FAST TRACK: Legacy lost: genetic variability and population size of extirpated US grey wolves (Canis) Tj ETQq0 0 0 gBT /Overlock 10 Tf

#	Article	IF	CITATIONS
91	Limited number of patrilines in horse domestication. Nature Genetics, 2004, 36, 335-336.	21.4	136
92	Genetic evaluation of an otter translocation program. Conservation Genetics, 2004, 5, 79-88.	1.5	37
93	Detecting the vanishing populations of the highly endangered Darwin's fox, Pseudalopex fulvipes. Animal Conservation, 2004, 7, 147-153.	2.9	16
94	From wild wolf to domestic dog: gene expression changes in the brain. Molecular Brain Research, 2004, 126, 198-206.	2.3	128
95	Two centuries of the Scandinavian wolf population: patterns of genetic variability and migration during an era of dramatic decline. Molecular Ecology, 2003, 12, 869-880.	3.9	98
96	Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf–dog hybrids. Heredity, 2003, 90, 17-24.	2.6	159
97	Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 91-97.	2.6	387
98	Ancient DNA Evidence for Old World Origin of New World Dogs. Science, 2002, 298, 1613-1616.	12.6	384
99	Title is missing!. Conservation Genetics, 2002, 3, 97-111.	1.5	66
100	Tales from the DNA of Domestic Horses. Science, 2001, 292, 218-219.	12.6	6
101	Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon) Tj ETQq1 1	0.784314 3.9	rg <u>BT</u> /Over o
102	Tripartite genetic subdivisions in the ornate shrew (Sorex ornatus). Molecular Ecology, 2001, 10, 127-147.	3.9	74
103	Genetic variation and population structure in Scandinavian wolverine (Gulo gulo) populations. Molecular Ecology, 2001, 10, 53-63.	3.9	106
104	Y chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers. Molecular Ecology, 2001, 10, 1959-1966.	3.9	104
105	Widespread Origins of Domestic Horse Lineages. Science, 2001, 291, 474-477.	12.6	423
106	Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Molecular Ecology, 1999, 8, 2089-2103.	3.9	314
107	Hybridization between Wolves and Dogs. Conservation Biology, 1999, 13, 195-198.	4.7	144
108	Phylogenetic relationships, evolution, and genetic diversity of the domestic dog. , 1999, 90, 71-77.		170

#	Article	IF	CITATIONS
109	Conservation genetics of the endangered Pampas deer (<i>Ozotoceros bezoarticus</i>). Molecular Ecology, 1998, 7, 47-56.	3.9	80
110	"Call of the wild". Science, 1997, 278, 205-209.	12.6	4
111	Multiple and Ancient Origins of the Domestic Dog. Science, 1997, 276, 1687-1689.	12.6	878
112	Fractals and search paths in mammals. Landscape Ecology, 1997, 12, 213-221.	4.2	66
113	Diurnal cycles in microhabitat use by forest passerines: consequences for community structure. Ibis, 1996, 138, 308-314.	1.9	5
114	Tooth losses and anomalies in the wolf (<i>Canis lupus</i>). Canadian Journal of Zoology, 1993, 71, 968-971.	1.0	29