Carles VilÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4409771/publications.pdf

Version: 2024-02-01

34105 34986 10,674 114 52 98 citations h-index g-index papers 120 120 120 10146 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Multiple and Ancient Origins of the Domestic Dog. Science, 1997, 276, 1687-1689.	12.6	878
2	Genome Sequencing Highlights the Dynamic Early History of Dogs. PLoS Genetics, 2014, 10, e1004016.	3.5	481
3	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	8.7	469
4	Widespread Origins of Domestic Horse Lineages. Science, 2001, 291, 474-477.	12.6	423
5	Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8878-8883.	7.1	412
6	Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 91-97.	2.6	387
7	Ancient DNA Evidence for Old World Origin of New World Dogs. Science, 2002, 298, 1613-1616.	12.6	384
8	Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping. PLoS Genetics, 2011, 7, e1002316.	3.5	339
9	Ebola Outbreak Killed 5000 Gorillas. Science, 2006, 314, 1564-1564.	12.6	326
10	Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Molecular Ecology, 1999, 8, 2089-2103.	3.9	314
11	Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 152-157.	7.1	265
12	Megafaunal Extinctions and the Disappearance of a Specialized Wolf Ecomorph. Current Biology, 2007, 17, 1146-1150.	3.9	182
13	Phylogenetic relationships, evolution, and genetic diversity of the domestic dog., 1999, 90, 71-77.		170
14	Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Research, 2006, 16, 990-994.	5 . 5	163
15	Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Molecular Ecology, 2007, 16, 4149-4170.	3.9	163
16	Worldwide patterns of genomic variation and admixture in gray wolves. Genome Research, 2016, 26, 163-173.	5.5	160
17	Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf–dog hybrids. Heredity, 2003, 90, 17-24.	2.6	159
18	Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni. Zootaxa, 2009, 2100, 1-97.	0.5	152

#	Article	IF	Citations
19	FAST TRACK: Legacy lost: genetic variability and population size of extirpated US grey wolves (Canis) Tj ETQq1	l 0.3 <u>8</u> 4314	rgBT/Overlo
20	Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biology Letters, 2006, 2, 316-319.	2.3	149
21	Deciphering the products of evolution at the species level: the need for an integrative taxonomy. Zoologica Scripta, 2009, 38, 431-447.	1.7	146
22	Bringing genetic diversity to the forefront of conservation policy and management. Conservation Genetics Resources, 2013, 5, 593-598.	0.8	145
23	Hybridization between Wolves and Dogs. Conservation Biology, 1999, 13, 195-198.	4.7	144
24	Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9589-E9597.	7.1	140
25	Limited number of patrilines in horse domestication. Nature Genetics, 2004, 36, 335-336.	21.4	136
26	Wolf population genetics in <scp>E</scp> urope: a systematic review, metaâ€analysis and suggestions for conservation and management. Biological Reviews, 2017, 92, 1601-1629.	10.4	131
27	The Legacy of Domestication: Accumulation of Deleterious Mutations in the Dog Genome. Molecular Biology and Evolution, 2008, 25, 2331-2336.	8.9	129
28	From wild wolf to domestic dog: gene expression changes in the brain. Molecular Brain Research, 2004, 126, 198-206.	2.3	128
29	Genes of domestic mammals augmented by backcrossing with wild ancestors. Trends in Genetics, 2005, 21, 214-218.	6.7	121
30	Genetic variation and population structure in Scandinavian wolverine (Gulo gulo) populations. Molecular Ecology, 2001, 10, 53-63.	3.9	106
31	Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Molecular Ecology, 2006, 15, 1561-1576.	3.9	105
32	Y chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers. Molecular Ecology, 2001, 10, 1959-1966.	3.9	104
33	Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evolutionary Applications, 2014, 7, 984-998.	3.1	102
34	Genetic analyses reveal independent domestication origins of Eurasian reindeer. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1849-1855.	2.6	99
35	Two centuries of the Scandinavian wolf population: patterns of genetic variability and migration during an era of dramatic decline. Molecular Ecology, 2003, 12, 869-880.	3.9	98

Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

36

#	Article	IF	CITATIONS
37	Neotropical diversification seen through glassfrogs. Journal of Biogeography, 2014, 41, 66-80.	3.0	91
38	Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Molecular Ecology, 2006, 16, 629-638.	3.9	83
39	Phylogenetic relationships of glassfrogs (Centrolenidae) based on mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 2008, 48, 574-595.	2.7	83
40	Conservation genetics of the endangered Pampas deer (<i>Ozotoceros bezoarticus</i>). Molecular Ecology, 1998, 7, 47-56.	3.9	80
41	Sea ice occurrence predicts genetic isolation in the Arctic fox. Molecular Ecology, 2007, 16, 4241-4255.	3.9	77
42	Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs. PLoS Genetics, 2016, 12, e1005851.	3.5	77
43	Tripartite genetic subdivisions in the ornate shrew (Sorex ornatus). Molecular Ecology, 2001, 10, 127-147.	3.9	74
44	Selection for tameness has changed brain gene expression in silver foxes. Current Biology, 2005, 15, R915-R916.	3.9	67
45	Fractals and search paths in mammals. Landscape Ecology, 1997, 12, 213-221.	4.2	66
46	Title is missing!. Conservation Genetics, 2002, 3, 97-111.	1.5	66
47	Phylogeographical analyses of domestic and wild yaks based on mitochondrial DNA: new data and reappraisal. Journal of Biogeography, 2010, 37, 2332-2344.	3.0	66
48	Sample Planning Optimization Tool for conservation and population Genetics (<scp>SPOTG</scp>): a software for choosing the appropriate number of markers and samples. Methods in Ecology and Evolution, 2013, 4, 299-303.	5. 2	66
49	Wolf or dog? Genetic identification of predators from saliva collected around bite wounds on prey. Conservation Genetics, 2008, 9, 1275-1279.	1.5	65
50	Prdm9, a Major Determinant of Meiotic Recombination Hotspots, Is Not Functional in Dogs and Their Wild Relatives, Wolves and Coyotes. PLoS ONE, 2011, 6, e25498.	2.5	64
51	Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128.	2.9	60
52	Reliability of noninvasive genetic census of otters compared to field censuses. Conservation Genetics, 2007, 8, 1097-1107.	1.5	59
53	Effect of the enzyme and PCR conditions on the quality of high-throughput DNA sequencing results. Scientific Reports, 2015, 5, 8056.	3.3	57
54	Whole mitochondrial genomes illuminate ancient intercontinental dispersals of grey wolves (<i>Canis lupus</i>). Journal of Biogeography, 2016, 43, 1728-1738.	3.0	57

#	Article	IF	Citations
55	A Simple Repeat Polymorphism in the MITF-M Promoter Is a Key Regulator of White Spotting in Dogs. PLoS ONE, 2014, 9, e104363.	2.5	50
56	Decades of population genetic research reveal the need for harmonization of molecular markers: the grey wolf <scp><i>C</i></scp> <i>anis lupus</i>	4.8	49
57	Signatures of demographic bottlenecks in European wolf populations. Conservation Genetics, 2011, 12, 701-712.	1.5	48
58	On the path to extinction: Inbreeding and admixture in a declining grey wolf population. Molecular Ecology, 2018, 27, 3599-3612.	3.9	46
59	Phylogeography of the white-tailed eagle, a generalist with large dispersal capacity. Journal of Biogeography, 2007, 34, 1193-1206.	3.0	45
60	Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution; International Journal of Organic Evolution, 2016, 70, 1364-1375.	2.3	44
61	Assortative mating and fragmentation within dog breeds. BMC Evolutionary Biology, 2008, 8, 28.	3.2	43
62	Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conservation Genetics, 2006, 7, 861-878.	1.5	42
63	Correlates of species richness in the largest Neotropical amphibian radiation. Journal of Evolutionary Biology, 2011, 24, 931-942.	1.7	42
64	From groups to communities in western lowland gorillas. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182019.	2.6	40
65	Genetic evaluation of an otter translocation program. Conservation Genetics, 2004, 5, 79-88.	1.5	37
66	Ecomorphological convergence in <i>Eleutherodactylus</i> frogs: a case of replicate radiations in the Caribbean. Ecology Letters, 2019, 22, 884-893.	6.4	37
67	Species diversity of Hyalinobatrachium glassfrogs (Amphibia: Centrolenidae) from the Guiana Shield, with the description of two new species. Zootaxa, 2011, 3132, 1.	0.5	36
68	Noninvasive monitoring of wolves at the edge of their distribution and the cost of their conservation. Animal Conservation, 2010, 13, 157-161.	2.9	34
69	Strong Artificial Selection in Domestic Mammals Did Not Result in an Increased Recombination Rate. Molecular Biology and Evolution, 2015, 32, 510-523.	8.9	34
70	Morphological and genetic sex identification of white-tailed eagle Haliaeetus albicilla nestlings. Journal of Ornithology, 2007, 148, 435-442.	1.1	32
71	Conservation Genetic Resources for Effective Species Survival (ConGRESS): Bridging the divide between conservation research and practice. Journal for Nature Conservation, 2013, 21, 433-437.	1.8	32
72	Vanishing native American dog lineages. BMC Evolutionary Biology, 2011, 11, 73.	3.2	31

#	Article	IF	CITATIONS
73	The genomic basis of adaptation to highâ€altitude habitats in the eastern honey bee (<i>Apis cerana</i>). Molecular Ecology, 2019, 28, 746-760.	3.9	30
74	Tooth losses and anomalies in the wolf (<i>Canis lupus</i>). Canadian Journal of Zoology, 1993, 71, 968-971.	1.0	29
75	Are Farm-Reared Quails for Game Restocking Really Common Quails (Coturnix coturnix)?: A Genetic Approach. PLoS ONE, 2012, 7, e39031.	2.5	29
76	Conservation genetics in the European Union – Biases, gaps and future directions. Biological Conservation, 2017, 209, 130-136.	4.1	26
77	New developments in the field of genomic technologies and their relevance to conservation management. Conservation Genetics, 2022, 23, 217-242.	1.5	26
78	Massive genome inversion drives coexistence of divergent morphs in common quails. Current Biology, 2022, 32, 462-469.e6.	3.9	25
79	Reply to Garner et al Trends in Ecology and Evolution, 2016, 31, 83-84.	8.7	24
80	Similar genomic proportions of copy number variation within gray wolves and modern dog breeds inferred from whole genome sequencing. BMC Genomics, 2017, 18, 977.	2.8	24
81	Fineâ€scale kin recognition in the absence of social familiarity in the Siberian jay, a monogamous bird species. Molecular Ecology, 2015, 24, 5726-5738.	3.9	23
82	Barking up the wrong tree: Modern northern European dogs fail to explain their origin. BMC Evolutionary Biology, 2008, 8, 71.	3.2	22
83	The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction?. Molecular Ecology, 2006, 15, 1441-1453.	3.9	21
84	The role of humans in the diversification of a threatened island raptor. BMC Evolutionary Biology, 2010, 10, 384.	3.2	21
85	Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus intermedius) at the El FrÃo Biological Station, Venezuela. PLoS ONE, 2016, 11, e0150245.	2.5	21
86	Impact of hybridization with domestic dogs on the conservation of wild canids. , 2013, , 170-184.		21
87	Lethal management may hinder population recovery in Iberian wolves. Biodiversity and Conservation, 2019, 28, 415-432.	2.6	19
88	Detecting slow introgression of invasive alleles in an extensively restocked game bird. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	18
89	Decreased fitness of restocked hybrid quails prevents fast admixture with wild European quails. Biological Conservation, 2014, 171, 74-81.	4.1	18
90	Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Molecular Phylogenetics and Evolution, 2020, 149, 106841.	2.7	18

#	Article	IF	Citations
91	Detecting the vanishing populations of the highly endangered Darwin's fox, Pseudalopex fulvipes. Animal Conservation, 2004, 7, 147-153.	2.9	16
92	Analysis of structural diversity in wolf-like canids reveals post-domestication variants. BMC Genomics, 2014, 15, 465.	2.8	16
93	A practical guide to build i>de-novo i>assemblies for single tissues of non-model organisms: the example of a Neotropical frog. Peerl, 2017, 5, e3702.	2.0	16
94	DISCORDANT PATTERNS OF MORPHOLOGICAL VARIATION IN GENETICALLY DIVERGENT POPULATIONS OF ORNATE SHREWS (SOREX ORNATUS). Journal of Mammalogy, 2004, 85, 886-896.	1.3	15
95	Microsatellite markers for two stifftail ducks: the white-headed duck, Oxyura leucocephala, and the ruddy duck, O. jamaicensis. Molecular Ecology Notes, 2005, 5, 263-265.	1.7	11
96	A test of the integrated evolutionary speed hypothesis in a <scp>N</scp> eotropical amphibian radiation. Global Ecology and Biogeography, 2015, 24, 804-813.	5.8	10
97	Selection for tameness modulates the expression of heme related genes in silver foxes. Behavioral and Brain Functions, 2007, 3, 18.	3.3	8
98	Resurrection of Hyalinobatrachium orocostale and Notes on the Hyalinobatrachium orientale Species Complex (Anura: Centrolenidae). Herpetologica, 2008, 64, 472-484.	0.4	8
99	Single-layer centrifugation separates spermatozoa from diploid cells in epididymal samples from gray wolves, Canis lupus (L.). Theriogenology, 2014, 82, 773-776.	2.1	8
100	A new species of Hyalinobatrachium (Centrolenidae: Anura) from Serran $ ilde{A}$ a de Perij $ ilde{A}$ i, Venezuela. Zootaxa, 2007, 1441, .	0.5	7
101	Evaluation of methods for single hair DNA amplification. Conservation Genetics, 2007, 8, 977-981.	1.5	7
102	Tales from the DNA of Domestic Horses. Science, 2001, 292, 218-219.	12.6	6
103	Postcopulatory sexual selection favors fertilization success of restocking hybrid quails over native Common quails (Coturnix coturnix). Journal of Ornithology, 2016, 157, 33-42.	1.1	6
104	Cryptic within cryptic: genetics, morphometrics, and bioacoustics delimitateÂa new species of Eleutherodactylus (Anura: Eleutherodactylidae) from Eastern Cuba. Zootaxa, 2017, 4221, zootaxa.4221.5.1.	0.5	6
105	Hibridación entre la codorniz común (Coturnix coturnix) y la codorniz de granja: estado de un problema de conservación. Ecosistemas, 2013, 22, 48-53.	0.4	6
106	Transparent frogs show potential of natural world. Nature, 2007, 449, 972-972.	27.8	5
107	Diurnal cycles in microhabitat use by forest passerines: consequences for community structure. Ibis, 1996, 138, 308-314.	1.9	5
108	Biased assessment of ongoing admixture using STRUCTURE in the absence of reference samples. Molecular Ecology Resources, 2021, 21, 677-689.	4.8	5

CARLES VILÃ

#	Article	IF	CITATIONS
109	"Call of the wild". Science, 1997, 278, 205-209.	12.6	4
110	Mate guarding and male body condition shape male fertilization success and female mating system in the common quail. Animal Behaviour, 2018, 136, 107-117.	1.9	2
111	Towards high–throughput analyses of fecal samples from wildlife. Animal Biodiversity and Conservation, 2020, , 171-183.	0.5	2
112	Phylogenomics and evolutionary history of Oreobates (Anura: Craugastoridae) Neotropical frogs along elevational gradients. Molecular Phylogenetics and Evolution, 2021, 161, 107167.	2.7	1
113	Automated genotyping of microsatellite loci from feces with high throughput sequences. PLoS ONE, 2021, 16, e0258906.	2.5	1
114	Horses: Domestication. , 2020, , 5294-5296.		0