
## Mauricio Santillana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4409725/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19<br>Outbreak. Cancer Discovery, 2020, 10, 783-791.                                                                  | 9.4  | 1,286     |
| 2  | Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature, 2020, 585, 410-413.                                                                                                                  | 27.8 | 913       |
| 3  | Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance. PLoS<br>Computational Biology, 2015, 11, e1004513.                                                                    | 3.2  | 338       |
| 4  | Aggregated mobility data could help fight COVID-19. Science, 2020, 368, 145-146.                                                                                                                                      | 12.6 | 303       |
| 5  | Antibiotic resistance increases with local temperature. Nature Climate Change, 2018, 8, 510-514.                                                                                                                      | 18.8 | 287       |
| 6  | Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14473-14478.                                | 7.1  | 286       |
| 7  | Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. Science, 2021, 372, .                                                                                                    | 12.6 | 283       |
| 8  | SARS-CoV-2 RNA concentrations in wastewater foreshadow dynamics and clinical presentation of new COVID-19 cases. Science of the Total Environment, 2022, 805, 150121.                                                 | 8.0  | 192       |
| 9  | Flu Near You: Crowdsourced Symptom Reporting Spanning 2 Influenza Seasons. American Journal of<br>Public Health, 2015, 105, 2124-2130.                                                                                | 2.7  | 179       |
| 10 | Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease<br>Surveillance with Search, Social Media, and News Report Data. PLoS Neglected Tropical Diseases, 2017,<br>11, e0005295. | 3.0  | 151       |
| 11 | What Can Digital Disease Detection Learn from (an External Revision to) Google Flu Trends?. American<br>Journal of Preventive Medicine, 2014, 47, 341-347.                                                            | 3.0  | 146       |
| 12 | A Case Study of the New York City 2012-2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives. Journal of Medical Internet Research, 2014, 16, e236.                    | 4.3  | 136       |
| 13 | An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time.<br>Science Advances, 2021, 7, .                                                                                | 10.3 | 114       |
| 14 | The role of environmental factors on transmission rates of the COVID-19 outbreak: an initial assessment in two spatial scales. Scientific Reports, 2020, 10, 17002.                                                   | 3.3  | 108       |
| 15 | Evaluation of Internet-Based Dengue Query Data: Google Dengue Trends. PLoS Neglected Tropical<br>Diseases, 2014, 8, e2713.                                                                                            | 3.0  | 107       |
| 16 | Utilizing Nontraditional Data Sources for Near Real-Time Estimation of Transmission Dynamics During<br>the 2015-2016 Colombian Zika Virus Disease Outbreak. JMIR Public Health and Surveillance, 2016, 2, e30.        | 2.6  | 106       |
| 17 | Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis. JMIR Public Health and Surveillance, 2018, 4, e4.                                             | 2.6  | 85        |
| 18 | Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico. Scientific Reports, 2016, 6, 33707.                                              | 3.3  | 82        |

MAURICIO SANTILLANA

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Using electronic health records and Internet search information for accurate influenza forecasting.<br>BMC Infectious Diseases, 2017, 17, 332.                                                                                      | 2.9  | 79        |
| 20 | Advances in using Internet searches to track dengue. PLoS Computational Biology, 2017, 13, e1005607.                                                                                                                                | 3.2  | 76        |
| 21 | Genomic, epidemiological and digital surveillance of Chikungunya virus in the Brazilian Amazon. PLoS<br>Neglected Tropical Diseases, 2019, 13, e0007065.                                                                            | 3.0  | 75        |
| 22 | Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches. Nature Communications, 2019, 10, 147.                                                                         | 12.8 | 67        |
| 23 | Using Clinicians' Search Query Data to Monitor Influenza Epidemics. Clinical Infectious Diseases, 2014, 59, 1446-1450.                                                                                                              | 5.8  | 64        |
| 24 | Determinants of Participants' Follow-Up and Characterization of Representativeness in Flu Near You,<br>A Participatory Disease Surveillance System. JMIR Public Health and Surveillance, 2017, 3, e18.                              | 2.6  | 59        |
| 25 | Rates of increase of antibiotic resistance and ambient temperature in Europe: a cross-national analysis of 28 countries between 2000 and 2016. Eurosurveillance, 2020, 25, .                                                        | 7.0  | 46        |
| 26 | Association of Acute Symptoms of COVID-19 and Symptoms of Depression in Adults. JAMA Network Open, 2021, 4, e213223.                                                                                                                | 5.9  | 43        |
| 27 | Combining Participatory Influenza Surveillance with Modeling and Forecasting: Three Alternative Approaches. JMIR Public Health and Surveillance, 2017, 3, e83.                                                                      | 2.6  | 42        |
| 28 | COVID-19: US federal accountability for entry, spread, and inequities—lessons for the future.<br>European Journal of Epidemiology, 2020, 35, 995-1006.                                                                              | 5.7  | 38        |
| 29 | The role of race, religion, and partisanship in misperceptions about COVID-19. Group Processes and Intergroup Relations, 2021, 24, 638-657.                                                                                         | 3.9  | 38        |
| 30 | Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach<br>Using Novel Digital Data and Estimates From Mechanistic Models. Journal of Medical Internet<br>Research, 2020, 22, e20285.        | 4.3  | 38        |
| 31 | Comparison of crowd-sourced, electronic health records based, and traditional health-care based influenza-tracking systems at multiple spatial resolutions in the United States of America. BMC Infectious Diseases, 2018, 18, 403. | 2.9  | 36        |
| 32 | 2014 Ebola Outbreak: Media Events Track Changes in Observed Reproductive Number. PLOS Currents, 2015, 7, .                                                                                                                          | 1.4  | 35        |
| 33 | Incorporating human mobility data improves forecasts of Dengue fever in Thailand. Scientific Reports, 2021, 11, 923.                                                                                                                | 3.3  | 33        |
| 34 | The Role of Environmental Factors on Transmission Rates of the COVID-19 Outbreak: An Initial Assessment in Two Spatial Scales SSRN Electronic Journal, 2020, , 3552677.                                                             | 0.4  | 32        |
| 35 | Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches. PLoS Computational Biology, 2021, 17, e1008994.            | 3.2  | 28        |
| 36 | Improved Real-Time Influenza Surveillance: Using Internet Search Data in Eight Latin American<br>Countries. JMIR Public Health and Surveillance, 2019, 5, e12214.                                                                   | 2.6  | 24        |

MAURICIO SANTILLANA

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Association of Major Depressive Symptoms With Endorsement of COVID-19 Vaccine Misinformation<br>Among US Adults. JAMA Network Open, 2022, 5, e2145697.                                                          | 5.9  | 23        |
| 38 | COVID-19 Positive Cases, Evidence on the Time Evolution of the Epidemic or An Indicator of Local Testing Capabilities? A Case Study in the United States. SSRN Electronic Journal, 0, , .                       | 0.4  | 22        |
| 39 | Enhancing Situational Awareness to Prevent Infectious Disease Outbreaks from Becoming<br>Catastrophic. Current Topics in Microbiology and Immunology, 2019, 424, 59-74.                                         | 1.1  | 21        |
| 40 | Toward the use of neural networks for influenza prediction at multiple spatial resolutions. Science Advances, 2021, 7, .                                                                                        | 10.3 | 21        |
| 41 | Communicating Benefits from Vaccines Beyond Preventing Infectious Diseases. Infectious Diseases and Therapy, 2020, 9, 467-480.                                                                                  | 4.0  | 18        |
| 42 | Association Between Social Media Use and Self-reported Symptoms of Depression in US Adults. JAMA<br>Network Open, 2021, 4, e2136113.                                                                            | 5.9  | 17        |
| 43 | Editorial Commentary: Perspectives on the Future of Internet Search Engines and Biosurveillance<br>Systems. Clinical Infectious Diseases, 2017, 64, 42-43.                                                      | 5.8  | 16        |
| 44 | Adding Continuous Vital Sign Information to Static Clinical Data Improves the Prediction of Length of<br>Stay After Intubation: A Data-Driven Machine Learning Approach. Respiratory Care, 2020, 65, 1367-1377. | 1.6  | 16        |
| 45 | A dynamic, ensemble learning approach to forecast dengue fever epidemic years in Brazil using<br>weather and population susceptibility cycles. Journal of the Royal Society Interface, 2021, 18, 20201006.      | 3.4  | 16        |
| 46 | High coverage COVID-19 mRNA vaccination rapidly controls SARS-CoV-2 transmission in long-term care facilities. Communications Medicine, 2021, 1, .                                                              | 4.2  | 16        |
| 47 | Internet search query data improve forecasts of daily emergency department volume. Journal of the<br>American Medical Informatics Association: JAMIA, 2019, 26, 1574-1583.                                      | 4.4  | 15        |
| 48 | Relatedness of the incidence decay with exponential adjustment (IDEA) model, "Farr's law―and SIR<br>compartmental difference equation models. Infectious Disease Modelling, 2018, 3, 1-12.                      | 1.9  | 14        |
| 49 | An adaptive reduction algorithm for efficient chemical calculations in global atmospheric chemistry models. Atmospheric Environment, 2010, 44, 4426-4431.                                                       | 4.1  | 13        |
| 50 | Real-time estimation of disease activity in emerging outbreaks using internet search information. PLoS<br>Computational Biology, 2020, 16, e1008117.                                                            | 3.2  | 13        |
| 51 | High-Resolution Spatio-Temporal Model for County-Level COVID-19 Activity in the U.S ACM<br>Transactions on Management Information Systems, 2021, 12, 1-20.                                                      | 2.8  | 13        |
| 52 | Factors Associated With Self-reported Symptoms of Depression Among Adults With and Without a Previous COVID-19 Diagnosis. JAMA Network Open, 2021, 4, e2116612.                                                 | 5.9  | 12        |
| 53 | Fitbit-informed influenza forecasts. The Lancet Digital Health, 2020, 2, e54-e55.                                                                                                                               | 12.3 | 11        |
| 54 | Differences in Regional Patterns of Influenza Activity Across Surveillance Systems in the United<br>States: Comparative Evaluation. JMIR Public Health and Surveillance, 2019, 5, e13403.                       | 2.6  | 11        |

MAURICIO SANTILLANA

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Machine learning approaches to predicting no-shows in pediatric medical appointment. Npj Digital<br>Medicine, 2022, 5, 50.                                                      | 10.9 | 11        |
| 56 | Using heterogeneous data to identify signatures of dengue outbreaks at fine spatio-temporal scales<br>across Brazil. PLoS Neglected Tropical Diseases, 2021, 15, e0009392.      | 3.0  | 10        |
| 57 | Genderâ€specificity of resilience in major depressive disorder. Depression and Anxiety, 2021, 38, 1026-1033.                                                                    | 4.1  | 9         |
| 58 | Near real-time surveillance of the SARS-CoV-2 epidemic with incomplete data. PLoS Computational Biology, 2022, 18, e1009964.                                                    | 3.2  | 8         |
| 59 | County-level assessment of United States kindergarten vaccination rates for measles mumps rubella<br>(MMR) for the 2014–2015 school year. Vaccine, 2017, 35, 6444-6450.         | 3.8  | 7         |
| 60 | Prevalence of Firearm Ownership Among Individuals With Major Depressive Symptoms. JAMA Network Open, 2022, 5, e223245.                                                          | 5.9  | 7         |
| 61 | Estimation of Pneumonic Plague Transmission in Madagascar, August–November 2017. PLOS Currents, 2018, 10, .                                                                     | 1.4  | 6         |
| 62 | Estimating numerical errors due to operator splitting in global atmospheric chemistry models:<br>Transport and chemistry. Journal of Computational Physics, 2016, 305, 372-386. | 3.8  | 5         |
| 63 | Influenza forecasting for French regions combining EHR, web and climatic data sources with a machine learning ensemble approach. PLoS ONE, 2021, 16, e0250890.                  | 2.5  | 5         |
| 64 | A nowcasting framework for correcting for reporting delays in malaria surveillance. PLoS<br>Computational Biology, 2021, 17, e1009570.                                          | 3.2  | 4         |
| 65 | Predicting dengue incidence leveraging internet-based data sources. A case study in 20 cities in Brazil.<br>PLoS Neglected Tropical Diseases, 2022, 16, e0010071.               | 3.0  | 4         |
| 66 | Noninvasive Ventilation Is Interrupted Frequently and Mostly Used at Night in the Pediatric Intensive Care Unit. Respiratory Care, 2020, 65, 341-346.                           | 1.6  | 1         |
| 67 | 1605. Temperature Modulates the Rate of Increase of Antibiotic Resistance Across Europe. Open Forum<br>Infectious Diseases, 2019, 6, S585-S586.                                 | 0.9  | Ο         |
| 68 | Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020, 16, e1008117.                                                         |      | 0         |
| 69 | Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020, 16, e1008117.                                                         |      | Ο         |
| 70 | Real-time estimation of disease activity in emerging outbreaks using internet search information. ,<br>2020, 16, e1008117.                                                      |      | 0         |
| 71 | Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020, 16, e1008117.                                                         |      | 0         |
| 72 | Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020, 16, e1008117.                                                         |      | 0         |

| #  | Article                                                                                                                 | IF | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 73 | Real-time estimation of disease activity in emerging outbreaks using internet search information. , 2020, 16, e1008117. |    | 0         |