Grace Mulcahy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/440953/publications.pdf

Version: 2024-02-01

106 papers 4,617 citations

36 h-index 106344 65 g-index

110 all docs

110 docs citations

110 times ranked

3715 citing authors

#	Article	IF	CITATIONS
1	Babesia divergens , a Bovine Blood Parasite of Veterinary and Zoonotic Importance. Clinical Microbiology Reviews, 2003, 16, 622-636.	13.6	336
2	Thioredoxin Peroxidase Secreted by Fasciola hepatica Induces the Alternative Activation of Macrophages. Infection and Immunity, 2005, 73, 166-173.	2.2	258
3	Fasciola hepatica cathepsin L-like proteases: biology, function, and potential in the development of first generation liver fluke vaccines. International Journal for Parasitology, 2003, 33, 1173-1181.	3.1	238
4	Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics, 2004, 56, 170-177.	2.4	197
5	Fasciola hepatica infection downregulates Th1 responses in mice. Parasite Immunology, 2000, 22, 147-155.	1.5	195
6	Immunomodulatory molecules of Fasciola hepatica: Candidates for both vaccine and immunotherapeutic development. Veterinary Parasitology, 2013, 195, 272-285.	1.8	162
7	Fasciola hepatica vaccine: We may not be there yet but we're on the right road. Veterinary Parasitology, 2015, 208, 101-111.	1.8	158
8	Angiostrongylus vasorum: a real heartbreaker. Trends in Parasitology, 2005, 21, 49-51.	3.3	133
9	Fasciola hepatica is associated with the failure to detect bovine tuberculosis in dairy cattle. Nature Communications, 2012, 3, 853.	12.8	116
10	Experimental Fasciola hepatica Infection Alters Responses to Tests Used for Diagnosis of Bovine Tuberculosis. Infection and Immunity, 2007, 75, 1373-1381.	2.2	113
11	Protection of cattle against a natural infection of Fasciola hepatica by vaccination with recombinant cathepsin L1 (rFhCL1). Vaccine, 2010, 28, 5551-5557.	3.8	111
12	Parasite vaccines — a reality?. Veterinary Parasitology, 2001, 98, 149-167.	1.8	108
13	Helminth vaccines: from mining genomic information for vaccine targets to systems used for protein expression. International Journal for Parasitology, 2003, 33, 621-640.	3.1	88
14	The roles of IL-10 and TGF- \hat{l}^2 in controlling IL-4 and IFN- \hat{l}^3 production during experimental Fasciola hepatica infection. International Journal for Parasitology, 2008, 38, 1673-1680.	3.1	87
15	The synthetic form of a novel chicken ?-defensin identified in silico is predominantly active against intestinal pathogens. Immunogenetics, 2005, 57, 90-98.	2.4	74
16	The comparative efficacy of four anthelmintics against a natural acquired Fasciola hepatica infection in hill sheep flock in the west of Ireland. Veterinary Parasitology, 2009, 164, 201-205.	1.8	72
17	Possible mechanisms underlying age-related resistance to bovine babesiosis. Parasite Immunology, 2005, 27, 115-120.	1.5	67
18	The prevalence of <i>Cryptosporidium </i> species and subtypes in human faecal samples in Ireland. Epidemiology and Infection, 2009, 137, 270-277.	2.1	65

#	Article	IF	Citations
19	A survey of helminth control practices in equine establishments in Ireland. Veterinary Parasitology, 2002, 109, 101-110.	1.8	64
20	Co-Infection of Cattle with <i>Fasciola hepatica </i> and <i>Mycobacterium bovis </i> Immunological Consequences. Transboundary and Emerging Diseases, 2009, 56, 269-274.	3.0	63
21	Prevalence of Cryptosporidium species in intensively farmed pigs in Ireland. Parasitology, 2007, 134, 1575-1582.	1.5	62
22	Tissue migration by parasitic helminths – an immunoevasive strategy?. Trends in Parasitology, 2005, 21, 273-277.	3.3	61
23	Bovine paramphistomes in Ireland. Veterinary Parasitology, 2014, 204, 199-208.	1.8	57
24	Possible Role for Toll-Like Receptors in Interaction of <i>Fasciola hepatica </i> Excretory/Secretory Products with Bovine Macrophages. Infection and Immunity, 2008, 76, 678-684.	2.2	55
25	Interaction of Cryptosporidium hominis and Cryptosporidium parvum with Primary Human and Bovine Intestinal Cells. Infection and Immunity, 2006, 74, 99-107.	2.2	54
26	Texel sheep are more resistant to natural nematode challenge than Suffolk sheep based on faecal egg count and nematode burden. Veterinary Parasitology, 2006, 136, 317-327.	1.8	53
27	Coordinating innate and adaptive immunity in Fasciola hepatica infection: Implications for control. Veterinary Parasitology, 2010, 169, 235-240.	1.8	52
28	<i>Toxoplasma gondii</i> in Ireland: Seroprevalence and Novel Molecular Detection Method in Sheep, Pigs, Deer and Chickens. Zoonoses and Public Health, 2013, 60, 168-173.	2.2	52
29	Alternative activation of ruminant macrophages by Fasciola hepatica. Veterinary Immunology and Immunopathology, 2007, 120, 31-40.	1.2	49
30	ILâ€10 and TGFâ€Î²1 are associated with variations in fluke burdens following experimental fasciolosis in sheep. Parasite Immunology, 2009, 31, 613-622.	1.5	49
31	Helminths at mucosal barriers—interaction with the immune system. Advanced Drug Delivery Reviews, 2004, 56, 853-868.	13.7	48
32	Evaluation of hepatic changes and local and systemic immune responses in goats immunized with recombinant Peroxiredoxin (Prx) and challenged with Fasciola hepatica. Vaccine, 2010, 28, 2832-2840.	3.8	48
33	The effect of Quil A adjuvant on the course of experimental Fasciola hepatica infection in sheep. Vaccine, 2009, 27, 45-50.	3.8	46
34	Transcriptomic Study on Ovine Immune Responses to Fasciola hepatica Infection. PLoS Neglected Tropical Diseases, 2016, 10, e0005015.	3.0	46
35	Control of cryptosporidiosis in neonatal calves: Use of halofuginone lactate in two different calf rearing systems. Preventive Veterinary Medicine, 2010, 96, 143-151.	1.9	45
36	Rumen fluke in Irish sheep: prevalence, risk factors and molecular identification of two paramphistome species. BMC Veterinary Research, 2016, 12, 143.	1.9	40

#	Article	IF	CITATIONS
37	Biochemical characterisation of the recombinant peroxiredoxin (FhePrx) of the liver fluke, Fasciola hepatica. FEBS Letters, 2006, 580, 5016-5022.	2.8	37
38	Early and Late Peritoneal and Hepatic Changes in Goats Immunized with Recombinant Cathepsin L1 and Infected with Fasciola hepatica. Journal of Comparative Pathology, 2013, 148, 373-384.	0.4	36
39	Identity of rumen fluke in deer. Parasitology Research, 2014, 113, 4097-4103.	1.6	35
40	Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses. International Journal for Parasitology, 2019, 49, 489-500.	3.1	35
41	A coprological survey of parasites of wild carnivores in Ireland. Parasitology Research, 2013, 112, 3587-3593.	1.6	33
42	<i>Fasciola hepatica</i> infection reduces <i>Mycobacterium bovis</i> burden and mycobacterial uptake and suppresses the proâ€inflammatory response. Parasite Immunology, 2016, 38, 387-402.	1.5	33
43	Determining the Prevalence and Seasonality of Fasciola hepatica in Pasture-based Dairy herds in Ireland using a Bulk Tank Milk ELISA. Irish Veterinary Journal, 2015, 68, 16.	2.1	32
44	Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans. PLoS Neglected Tropical Diseases, 2016, 10, e0004688.	3.0	32
45	Comparison of diagnostic techniques for the detection of Cryptosporidium oocysts in animal samples. Experimental Parasitology, 2015, 151-152, 14-20.	1.2	31
46	Humoral immune response in goats immunised with cathepsin L1, peroxiredoxin and Sm14 antigen and experimentally challenged with Fasciola hepatica. Veterinary Parasitology, 2012, 185, 315-321.	1.8	29
47	A differential interplay between the expression of Th1/Th2/Treg related cytokine genes in Teladorsagia circumcincta infected DRB1*1101 carrier lambs. Veterinary Research, 2011, 42, 45.	3.0	28
48	Parasite control practices on pasture-based dairy farms in the Republic of Ireland. Veterinary Parasitology, 2014, 204, 352-363.	1.8	27
49	Partial protection against Eimeria acervulina and Eimeria tenella induced by synthetic peptide vaccine. Experimental Parasitology, 2005, 110, 342-348.	1.2	26
50	The dynamic influence of the DRB1*1101 allele on the resistance of sheep to experimental Teladorsagia circumcincta infection. Veterinary Research, 2011, 42, 46.	3.0	26
51	Prevalence and seasonality of bulk milk antibodies against Dictyocaulus viviparus and Ostertagia ostertagi in Irish pasture-based dairy herds. Veterinary Parasitology, 2015, 209, 108-116.	1.8	26
52	Panmictic Structure of the Cryptosporidium parvum Population in Irish Calves: Influence of Prevalence and Host Movement. Applied and Environmental Microbiology, 2013, 79, 2534-2541.	3.1	25
53	Spatial patterns of Fasciola hepatica and Calicophoron daubneyi infections in ruminants in Ireland and modelling of C. daubneyi infection. Parasites and Vectors, 2018, 11, 531.	2.5	25
54	Fasciola hepatica Infection in Cattle: Analyzing Responses of Peripheral Blood Mononuclear Cells (PBMC) Using a Transcriptomics Approach. Frontiers in Immunology, 2019, 10, 2081.	4.8	25

#	Article	IF	CITATIONS
55	Antibody recognition of cathepsin L1-derived peptides in Fasciola hepatica-infected and/or vaccinated cattle and identification of protective linear B-cell epitopes. Vaccine, 2018, 36, 958-968.	3.8	24
56	Host Cell Tropism Underlies Species Restriction of Human and Bovine Cryptosporidium parvum Genotypes. Infection and Immunity, 2004, 72, 6125-6131.	2.2	22
57	A preliminary study to understand the effect of Fasciola hepatica tegument on $na\tilde{A}$ ve macrophages and humoral responses in an ovine model. Veterinary Immunology and Immunopathology, 2011, 139, 245-249.	1.2	22
58	Molecular epidemiology of Cryptosporidium species in livestock in Ireland. Veterinary Parasitology, 2016, 216, 18-22.	1.8	22
59	Epidemiological investigation of a severe rumen fluke outbreak on an Irish dairy farm. Parasitology, 2018, 145, 948-952.	1.5	22
60	Outbreak of acute larval cyathostominosis – A "perfect storm―of inflammation and dysbiosis. Equine Veterinary Journal, 2021, 53, 727-739.	1.7	22
61	Gastrointestinal nematode control practices on lowland sheep farms in Ireland with reference to selection for anthelmintic resistance. Irish Veterinary Journal, 2011, 64, 4.	2.1	21
62	Standardisation of egg-viability assays for Fasciola hepatica and Calicophoron daubneyi: A tool for evaluating new technologies of parasite control. Veterinary Parasitology, 2015, 210, 25-31.	1.8	21
63	Canine pododermatitis and idiopathic disease. Veterinary Journal, 2008, 176, 146-157.	1.7	20
64	Longitudinal and spatial distribution of GP60 subtypes in human cryptosporidiosis cases in Ireland. Epidemiology and Infection, 2011, 139, 1945-1955.	2.1	19
65	Age-Stratified Bayesian Analysis To Estimate Sensitivity and Specificity of Four Diagnostic Tests for Detection of <i>Cryptosporidium</i> Oocysts in Neonatal Calves. Journal of Clinical Microbiology, 2011, 49, 76-84.	3.9	17
66	Cathepsin L proteases of the parasitic copepod, Lepeophtheirus salmonis. Aquaculture, 2012, 356-357, 264-271.	3.5	17
67	Development of a versatile <i>in vitro</i> method for understanding the migration of <i>Fasciola hepatica</i> newly excysted juveniles. Parasitology, 2016, 143, 24-33.	1.5	17
68	In vitro culture combined with quantitative TaqMan PCR for the assessment of Toxoplasma gondii tissue cyst viability. Veterinary Parasitology, 2009, 164, 167-172.	1.8	16
69	The immunoregulatory effects of co-infection with Fasciola hepatica: From bovine tuberculosis to Johne's disease. Veterinary Journal, 2017, 222, 9-16.	1.7	16
70	Liver fluke in Irish sheep: prevalence and associations with management practices and co-infection with rumen fluke. Parasites and Vectors, 2019, 12, 525.	2.5	16
71	INTERACTION OF EIMERIA TENELLA WITH INTESTINAL MUCIN IN VITRO. Journal of Parasitology, 2007, 93, 634-638.	0.7	15
72	Investigating the role of wild carnivores in the epidemiology of bovine neosporosis. Parasitology, 2013, 140, 296-302.	1.5	15

#	Article	IF	CITATIONS
73	Network Analysis of the Systemic Response to Fasciola hepatica Infection in Sheep Reveals Changes in Fibrosis, Apoptosis, Toll-Like Receptors 3/4, and B Cell Function. Frontiers in Immunology, 2017, 8, 485.	4.8	15
74	Comparison of four commercially available ELISA kits for diagnosis of Fasciola hepatica in Irish cattle. BMC Veterinary Research, 2019, 15, 414.	1.9	14
75	In silico analyses of protein glycosylating genes in the helminth Fasciola hepatica (liver fluke) predict protein-linked glycan simplicity and reveal temporally-dynamic expression profiles. Scientific Reports, 2018, 8, 11700.	3.3	13
76	The Worm Turns. Veterinary Pathology, 2014, 51, 385-392.	1.7	12
77	Assessment of Environmental and Occupational Risk Factors for the Mitigation and Containment of a COVID-19 Outbreak in a Meat Processing Plant. Frontiers in Public Health, 2021, 9, 769238.	2.7	12
78	Evaluation of Th1-like, Th2-like and immunomodulatory cytokine mRNA expression in the skin of dogs with immunomodulatory-responsive lymphocytic?plasmacytic pododermatitis. Veterinary Dermatology, 2006, 17, 313-321.	1.2	11
79	Peri-parturient rise of Cryptosporidium oocysts in cows: New insights provided by duplex quantitative real-time PCR. Veterinary Parasitology, 2012, 189, 366-368.	1.8	11
80	Characterisation of cathepsin B-like cysteine protease of Lepeophtheirus salmonis. Aquaculture, 2010, 310, 38-42.	3.5	9
81	Transcriptomic Analysis of Ovine Hepatic Lymph Node Following Fasciola hepatica Infection – Inhibition of NK Cell and IgE-Mediated Signaling. Frontiers in Immunology, 2021, 12, 687579.	4.8	9
82	Inactivation and Recovery of High Quality RNA From Positive SARS-CoV-2 Rapid Antigen Tests Suitable for Whole Virus Genome Sequencing. Frontiers in Public Health, 2022, 10, 863862.	2.7	9
83	An Irish perspective on Cryptosporidium. Part 1. Irish Veterinary Journal, 2006, 59, 442-7.	2.1	8
84	Migration of Fasciola hepaticanewly excysted juveniles is inhibited by high-mannose and oligomannose-typeN-glycan-binding lectins. Parasitology, 2017, 144, 1708-1717.	1.5	8
85	Identification of protective peptides of Fasciola hepatica-derived cathepsin L1 (FhCL1) in vaccinated sheep by a linear B-cell epitope mapping approach. Parasites and Vectors, 2020, 13, 390.	2.5	8
86	No Worm Is an Island; The Influence of Commensal Gut Microbiota on Cyathostomin Infections. Animals, 2020, 10, 2309.	2.3	8
87	Comparison of different methods for the solubilisation of Neospora caninum (Phylum Apicomplexa) antigen. Veterinary Parasitology, 2006, 135, 205-213.	1.8	7
88	Eimeria tenella: B-cell epitope mapping following primary and secondary infections. Experimental Parasitology, 2006, 113, 235-238.	1.2	7
89	A Multiomic Approach to Investigate the Effects of a Weight Loss Program on the Intestinal Health of Overweight Horses. Frontiers in Veterinary Science, 2021, 8, 668120.	2.2	7
90	<i>Fasciola hepatica</i> products can alter the response of bovine immune cells to <i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> . Parasite Immunology, 2020, 42, e12779.	1.5	6

#	Article	IF	CITATIONS
91	Horses are susceptible to natural, but resistant to experimental, infection with the liver fluke, Fasciola hepatica. Veterinary Parasitology, 2020, 281, 109094.	1.8	6
92	Survival of <i>Cryptosporidium parvum</i> oocysts in the presence of hydrated lime. Veterinary Record, 2010, 166, 297-300.	0.3	5
93	Comparison of Fasciola hepatica genotypes in relation to their ability to establish patent infections in the final host. Veterinary Parasitology, 2015, 210, 145-150.	1.8	5
94	Development of an in vitro model of the early-stage bovine tuberculous granuloma using Mycobacterium bovis-BCG. Veterinary Immunology and Immunopathology, 2015, 168, 249-257.	1,2	4
95	Timing of Transcriptomic Peripheral Blood Mononuclear Cell Responses of Sheep to Fasciola hepatica Infection Differs From Those of Cattle, Reflecting Different Disease Phenotypes. Frontiers in Immunology, 2021, 12, 729217.	4.8	4
96	The effect of Fasciola hepatica infection on respiratory vaccine responsiveness in calves. Veterinary Parasitology, 2014, 201, 31-39.	1.8	3
97	Cutaneous infiltrates and peripheral blood immune responses in dogs with immunomodulatoryâ€responsive lymphocytic–plasmacytic pododermatitis. Veterinary Dermatology, 2010, 21, 383-392.	1.2	2
98	Validation of a spatial liver fluke model under field conditions in Ireland. Geospatial Health, 2018, 13, 641.	0.8	2
99	Survey of the knowledge and perceptions of horse owners in Ireland of common clinical conditions and their impact. Equine Veterinary Journal, 2023, 55, 270-281.	1.7	2
100	An Irish perspective on Cryptosporidium. Part 2. Irish Veterinary Journal, 2006, 59, 495-500.	2.1	1
101	Keys to the Trematodes, Vol. 1; D.J. Gibbs, A. Jones, R.A. Bray (Eds.); CAB International, Wallington, UK, 521 pages, ISBN 0-851-99547-0. Veterinary Parasitology, 2003, 111, 273.	1.8	0
102	Isolation and Characterization of Cathepsin-L1 Protease From Fasciola hepatica Excretory-Secretory Products for Serodiagnosis of Human Fasciolosis. Methods in Biotechnology, 2006, , 191-201.	0.2	0
103	A study of dendritic cell and MHC class II expression in dogs with immunomodulatory-responsive lymphocytic-plasmacytic pododermatitis. Veterinary Journal, 2008, 177, 352-359.	1.7	0
104	Response letter. Veterinary Parasitology, 2015, 214, 228.	1.8	0
105	Editorial—One Health Special Issue—Parasite Immunology. Parasite Immunology, 2016, 38, 525-526.	1.5	0
106	Toxocara and toxocarosis a roundtable discussion. Companion Animal, 2016, 21, 225-235.	0.2	0