
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4409437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple binding modes of an Nâ€ŧerminal CCR5â€peptide in complex with HIV″ gp120. FEBS Journal, 2022, 289, 3132-3147.	4.7	2
2	Allovalency observed by transferred NOE: interactions of sulfated tyrosine residues in the Nâ€ŧerminal segment of CCR5 with the CCL5 chemokine. FEBS Journal, 2021, 288, 1648-1663.	4.7	7
3	Oligomerization of yeast α-factor receptor detected by fluorescent energy transfer between ligands. Biophysical Journal, 2021, 120, 5090-5106.	0.5	1
4	A Paradigm for Peptide Hormone-GPCR Analyses. Molecules, 2020, 25, 4272.	3.8	6
5	The methyl 13C-edited/13C-filtered transferred NOE for studying protein interactions with short linear motifs. Journal of Biomolecular NMR, 2020, 74, 681-693.	2.8	7
6	The Synthesis of Sulfated CCR5 Peptide Surrogates and their Use to Study Receptor-Ligand Interactions. Protein and Peptide Letters, 2019, 25, 1124-1136.	0.9	3
7	The solution structure of monomeric <scp>CCL</scp> 5 in complex with a doubly sulfated Nâ€ŧerminal segment of <scp>CCR</scp> 5. FEBS Journal, 2018, 285, 1988-2003.	4.7	35
8	Identification of peptideâ€binding sites within <scp>BSA</scp> using rapid, laserâ€induced covalent crossâ€linking combined with highâ€performance mass spectrometry. Journal of Molecular Recognition, 2018, 31, e2680.	2.1	6
9	Defining specific residueâ€ŧoâ€ŧesidue interactions between the gp120 bridging sheet and the Nâ€ŧerminal segment ofCCR5: applications of transferredNOE NMR. FEBS Journal, 2018, 285, 4296-4310.	4.7	2
10	Immunofocusing using conformationally constrained V3 peptide immunogens improves HIV-1 neutralization. Vaccine, 2017, 35, 222-230.	3.8	2
11	Dynamic roles for the N-terminus of the yeast G protein-coupled receptor Ste2p. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2058-2067.	2.6	6
12	Detection of intermolecular NOE interactions in large protein complexes. Progress in Nuclear Magnetic Resonance Spectroscopy, 2016, 97, 40-56.	7.5	23
13	Detection of intermolecular transferred <scp>NOE</scp> s in large protein complexes using asymmetric deuteration: <scp>HIV</scp> â€1 gp120 in complex with a <scp>CCR</scp> 5 peptide. FEBS Journal, 2016, 283, 4084-4096.	4.7	8
14	NMR Investigation of Structures of G-protein Coupled Receptor Folding Intermediates. Journal of Biological Chemistry, 2016, 291, 27170-27186.	3.4	6
15	Variable Dependence of Signaling Output on Agonist Occupancy of Ste2p, a G Protein-coupled Receptor in Yeast. Journal of Biological Chemistry, 2016, 291, 24261-24279.	3.4	8
16	The N-terminus of the yeast G protein-coupled receptor Ste2p plays critical roles in surface expression, signaling, and negative regulation. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 715-724.	2.6	16
17	Halo Assay for Toxic Peptides and Other Compounds in Microorganisms. Bio-protocol, 2016, 6, .	0.4	4

18 Uptake Assay for Radiolabeled Peptides in Yeast. Bio-protocol, 2016, 6, .

0.4 1

#	Article	IF	CITATIONS
19	The C4 region as a target for <scp>HIV</scp> entry inhibitors – <scp>NMR</scp> mapping of the interacting segments of T20 and gp120. FEBS Journal, 2015, 282, 4643-4657.	4.7	6
20	An extended <scp>CCR</scp> 5 <scp>ECL</scp> 2 peptide forms a helix that binds <scp>HIV</scp> â€1 gp120 through nonâ€specific hydrophobic interactions. FEBS Journal, 2015, 282, 1906-1921.	4.7	5
21	Structural characterization of triple transmembrane domain containing fragments of a yeast G proteinâ€coupled receptor in an organic : aqueous environment by solutionâ€state NMR spectroscopy. Journal of Peptide Science, 2015, 21, 212-222.	1.4	3
22	Novobiocin and peptide analogs of α-factor are positive allosteric modulators of the yeast G protein-coupled receptor Ste2p. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 916-924.	2.6	3
23	Identification of Destabilizing and Stabilizing Mutations of Ste2p, a G Protein-Coupled Receptor in <i>Saccharomyces cerevisiae</i> . Biochemistry, 2015, 54, 1787-1806.	2.5	7
24	Cross-linking Strategies to Study Peptide Ligand–Receptor Interactions. Methods in Enzymology, 2015, 556, 527-547.	1.0	4
25	Invited review GPCR structural characterization: Using fragments as building blocks to determine a complete structure. Biopolymers, 2014, 102, 223-243.	2.4	8
26	Identification of residues involved in homodimer formation located within a β-strand region of the N-terminus of a Yeast G protein-coupled receptor. Journal of Receptor and Signal Transduction Research, 2012, 32, 65-75.	2.5	24
27	Comparison of Fragments Comprising the First Two Helices of the Human Y4 and the Yeast Ste2p G-Protein-Coupled Receptors. Biophysical Journal, 2012, 103, 817-826.	0.5	4
28	Multiple regulatory roles of the carboxy terminus of Ste2p a yeast GPCR. Pharmacological Research, 2012, 65, 31-40.	7.1	19
29	Changes in Conformation at the Cytoplasmic Ends of the Fifth and Sixth Transmembrane Helices of a Yeast G Protein-Coupled Receptor in Response to Ligand Binding. Biochemistry, 2011, 50, 6841-6854.	2.5	22
30	Differential Interactions of Fluorescent Agonists and Antagonists with the Yeast G Protein Coupled Receptor Ste2p. Journal of Molecular Biology, 2011, 409, 513-528.	4.2	23
31	Biosynthesis of peptide fragments of eukaryotic GPCRs in <i>Escherichia coli</i> by directing expression into inclusion bodies. Journal of Peptide Science, 2010, 16, 213-218.	1.4	9
32	Identification of Residue-to-residue Contact between a Peptide Ligand and Its G Protein-coupled Receptor Using Periodate-mediated Dihydroxyphenylalanine Cross-linking and Mass Spectrometry. Journal of Biological Chemistry, 2010, 285, 39425-39436.	3.4	25
33	Peptides in the treatment of AIDS. Current Opinion in Structural Biology, 2009, 19, 473-482.	5.7	95
34	Identification of Specific Transmembrane Residues and Ligand-Induced Interface Changes Involved In Homo-Dimer Formation of a Yeast G Protein-Coupled Receptor. Biochemistry, 2009, 48, 10976-10987.	2.5	29
35	Structure of a Double Transmembrane Fragment of a G-Protein-Coupled Receptor in Micelles. Biophysical Journal, 2009, 96, 3187-3196.	0.5	32
36	Cross-Linking of a DOPA-Containing Peptide Ligand into Its G Protein-Coupled Receptor. Biochemistry, 2009, 48, 2033-2044.	2.5	25

#	Article	IF	CITATIONS
37	Structural Studies on Large Fragments of G Protein Coupled Receptors. Advances in Experimental Medicine and Biology, 2009, 611, 309-310.	1.6	0
38	Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR. Journal of Biomolecular NMR, 2008, 42, 257-269.	2.8	16
39	Unnatural Amino Acid Replacement in a Yeast G Protein-Coupled Receptor in Its Native Environment. Biochemistry, 2008, 47, 5638-5648.	2.5	47
40	The First Extracellular Loop of the Saccharomyces cerevisiae G Protein-coupled Receptor Ste2p Undergoes a Conformational Change upon Ligand Binding. Journal of Biological Chemistry, 2007, 282, 10387-10397.	3.4	40
41	Double-Mutant Cycle Scanning of the Interaction of a Peptide Ligand and Its G Protein-Coupled Receptorâ€. Biochemistry, 2007, 46, 3476-3481.	2.5	21
42	NMR Studies in Dodecylphosphocholine of a Fragment Containing the Seventh Transmembrane Helix of a G-Protein-Coupled Receptor from Saccharomyces cerevisiae. Biophysical Journal, 2007, 93, 467-482.	0.5	30
43	Synthesis of a Double Transmembrane Domain Fragment of Ste2p by Native Chemical Ligation. International Journal of Peptide Research and Therapeutics, 2007, 13, 251-263.	1.9	16
44	Synthesis, Biosynthesis, and Characterization of Transmembrane Domains of a G Protein—Coupled Receptor. Methods in Molecular Biology, 2007, 386, 95-121.	0.9	1
45	Selective labeling of a membrane peptide with15N-amino acids using cells grown in rich medium. Biopolymers, 2006, 84, 508-518.	2.4	12
46	Nutrient regulation of oligopeptide transport in Saccharomyces cerevisiae. Microbiology (United) Tj ETQq0 0 C) rgBT /Ove 1.8	rlock 10 Tf 50
47	Oligomerization of the Yeast α-Factor Receptor. Journal of Biological Chemistry, 2006, 281, 20698-20714.	3.4	54
48	Interacting Residues in an Activated State of a G Protein-coupled Receptor. Journal of Biological Chemistry, 2006, 281, 2263-2272.	3.4	23
49	Synthetic peptides as probes for conformational preferences of domains of membrane receptors. Biopolymers, 2005, 80, 199-213.	2.4	27
50	Biosynthesis and NMR Analysis of a 73-Residue Domain of a Saccharomyces cerevisiae G Protein-Coupled Receptor. Biochemistry, 2005, 44, 11795-11810.	2.5	36
51	Sexual conjugation in yeast: A paradigm to study G-protein-coupled receptor domain structure. Biopolymers, 2004, 76, 119-128.	2.4	19
52	A Fluorescent α-Factor Analogue Exhibits Multiple Steps on Binding to Its G Protein Coupled Receptor in Yeastâ€. Biochemistry, 2004, 43, 13564-13578.	2.5	45
53	Identification of Ligand Binding Regions of theSaccharomyces cerevisiaeα-Factor Pheromone Receptor by Photoaffinity Cross-Linkingâ€. Biochemistry, 2004, 43, 13193-13203.	2.5	48
54	The α-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides, 2004, 25, 1441-1463.	2.4	89

#	Article	IF	CITATIONS
55	Synthesis and Biophysical Characterization of a Multidomain Peptide from a Saccharomyces cerevisiae G Protein-coupled Receptor. Journal of Biological Chemistry, 2003, 278, 52537-52545.	3.4	14
56	Residues in the First Extracellular Loop of a G Protein-coupled Receptor Play a Role in Signal Transduction. Journal of Biological Chemistry, 2002, 277, 30581-30590.	3.4	31
57	Identification of a Contact Region between the Tridecapeptide α-Factor Mating Pheromone ofSaccharomyces cerevisiaeand Its G Protein-Coupled Receptor by Photoaffinity Labelingâ€. Biochemistry, 2002, 41, 6128-6139.	2.5	38
58	Tyr266 in the Sixth Transmembrane Domain of the Yeast α-Factor Receptor Plays Key Roles in Receptor Activation and Ligand Specificity. Biochemistry, 2002, 41, 13681-13689.	2.5	27
59	High resolution NMR analysis of the seven transmembrane domains of a heptahelical receptor in organic-aqueous medium. Biopolymers, 2002, 64, 161-176.	2.4	30
60	Schizosaccharomyces pombe isp4 encodes a transporter representing a novel family of oligopeptide transporters. Molecular Microbiology, 2002, 28, 729-741.	2.5	77
61	ATR-FTIR Study of the Structure and Orientation of Transmembrane Domains of the Saccharomyces cerevisiae α-Mating Factor Receptor in Phospholipids. Biochemistry, 2001, 40, 8945-8954.	2.5	38
62	Multiplicity and regulation of genes encoding peptide transporters inSaccharomyces cerevisiae. Molecular Membrane Biology, 2001, 18, 105-112.	2.0	77
63	Peptide fragments as models to study the structure of a G-protein coupled receptor: The α-factor receptor of Saccharomyces cerevisiae. Biopolymers, 2001, 60, 334.	2.4	24
64	Identification of Residues of the Saccharomyces cerevisiae G Protein-coupled Receptor Contributing to α-Factor Pheromone Binding. Journal of Biological Chemistry, 2001, 276, 37950-37961.	3.4	39
65	A Limited Spectrum of Mutations Causes Constitutive Activation of the Yeast α-Factor Receptorâ€. Biochemistry, 2000, 39, 6898-6909.	2.5	58
66	Conformational analysis of cyclic analogues of theSaccharomyces cerevisiae α-factor pheromone. , 1998, 45, 21-34.		10
67	Structure of segments of a G protein-coupled receptor: CD and NMR analysis of thesaccharomyces cerevisiae tridecapeptide pheromone receptor. , 1998, 46, 343-357.		27
68	PTR3, a novel gene mediating amino acidâ€inducible regulation of peptide transport inSaccharomyces cerevisiae. Molecular Microbiology, 1998, 29, 297-310.	2.5	40
69	Synthesis, Biological Activity, and Conformational Analysis of Peptidomimetic Analogues of theSaccharomyces cerevisiaeα-Factor Tridecapeptideâ€. Biochemistry, 1998, 37, 12465-12476.	2.5	24
70	An oligopeptide transport gene from Candida albicans. Microbiology (United Kingdom), 1997, 143, 387-396.	1.8	96
71	Position one analogs of the Saccharomyces cerevisiae tridecapeptide pheromone. Chemical Biology and Drug Design, 1997, 50, 319-328.	1.1	12
72	Probing the functional conformation of the tridecapeptide mating pheromone of <i>Saccharomyces cerevisiae</i> through study of disulfideâ€constrained analogs. International Journal of Peptide and Protein Research, 1996, 47, 131-141.	0.1	7

#	Article	IF	CITATIONS
73	A recognition component of the ubiquitin system is required for peptide transport in Saccharomyces cerevisiae. Molecular Microbiology, 1995, 15, 225-234.	2.5	62
74	The PTR family: a new group of peptide transporters. Molecular Microbiology, 1995, 16, 825-834.	2.5	238
75	Cloning of a Candida albicans peptide transport gene. Microbiology (United Kingdom), 1995, 141, 1147-1156.	1.8	39
76	Systematic analysis of the Saccharomyces cerevisiae .alphafactor containing lactam constraints of different ring size. Biochemistry, 1995, 34, 1308-1315.	2.5	17
77	Synthesis of αâ€ f actor analogues containing photoactivatable and labeling groups. International Journal of Peptide and Protein Research, 1995, 45, 106-115.	0.1	6
78	Studies on conformational consequences of <i>i</i> to <i>i</i> + 3 sideâ€chain cyclization in model cyclic tetrapeptides. International Journal of Peptide and Protein Research, 1995, 45, 418-429.	0.1	12
79	Chemical synthesis of the M-factor mating pheromone fromSchizosaccharomyces pombe. Yeast, 1994, 10, 595-601.	1.7	26
80	Direct observation of cell wall glucans in whole cells ofSaccharomyces cerevisiae by magic-angle spinning13C-nmr. Biopolymers, 1994, 34, 1627-1635.	2.4	28
81	Proline-Dependent Structural and Biological Properties of Peptides and Proteins. Critical Reviews in Biochemistry and Molecular Biology, 1993, 28, 31-81.	5.2	511
82	Antagonistic and synergistic peptide analogs of the tridecapeptide mating pheromone of Saccharomyces cerevisiae. Biochemistry, 1992, 31, 551-557.	2.5	43
83	Studies on the yeast ?-mating factor: A model for mammalian peptide hormones. Biopolymers, 1992, 32, 335-339.	2.4	16
84	Synthesis of Sâ€alkyl and Câ€ŧerminal analogs of the Saccharomyces cerevisiae aâ€factor. International Journal of Peptide and Protein Research, 1991, 37, 476-486.	0.1	21
85	Synthetic probes for the ?-factor receptor. Biopolymers, 1990, 29, 237-245.	2.4	7
86	Conformational studies of nikkomycin X in aqueous solution. Biopolymers, 1990, 29, 1297-1306.	2.4	1
87	Synthesis of biologically active analogs of the dodecapeptide αâ€factor mating pheromone of <i>Saccharomyces cerevisiae</i> . International Journal of Peptide and Protein Research, 1990, 35, 241-248.	0.1	5
88	Solution phase synthesis of <i>Saccharomyces cerevisiae a</i> â€mating factor and its analogs. International Journal of Peptide and Protein Research, 1990, 36, 362-373.	0.1	29
89	Biologically significant conformation of theSaccharomyces cerevisiae ?-factor. Biopolymers, 1989, 28, 487-497.	2.4	15
90	Structure-Activity Relationships of the Yeast α-Facto. Critical Reviews in Biochemistry, 1986, 21, 225-248.	7.5	46

#	Article	IF	CITATIONS
91	Biological activity and conformational isomerism in position 9 analogs of the des-1-tryptophan,3.betacyclohexylalaninealphafactor from Saccharomyces cerevisiae. Biochemistry, 1985, 24, 7070-7076.	2.5	27
92	Synthesis and biological activity of Nâ€acyl derivatives of a Saccharomyces cerevisiae mating pheromone. International Journal of Peptide and Protein Research, 1985, 25, 187-196.	0.1	4
93	Mobility of oligopeptides on normal-phase silica: Effect of positional isomerism. Biopolymers, 1983, 22, 1401-1407.	2.4	1
94	SYNTHESIS OF THE DODECAPEPTIDEâ€Î± MATING FACTOR OF SACCHAROMYCES CEREVISIAE. International Journal of Peptide and Protein Research, 1981, 17, 219-230.	0.1	18
95	1H-nmr study of protected methionine homo-oligopeptides in helix-supporting environment. Biopolymers, 1980, 19, 1791-1799.	2.4	14
96	THE PREFERRED CONFORMATIONS OF PROTECTED HOMODIâ€7O HOMOHEPTAMETHIONINE PEPTIDES A 1H N.M.R. Study in Deuterochloroform Medium. International Journal of Peptide and Protein Research, 1979, 14, 414-436.	0.1	27