
Te-Sheng Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4409181/publications.pdf Version: 2024-02-01

TE-SHENC CHANC

#	Article	IF	CITATIONS
1	Novel Glycosylation by Amylosucrase to Produce Glycoside Anomers. Biology, 2022, 11, 822.	2.8	0
2	Enzymatic Synthesis of Novel and Highly Soluble Puerarin Glucoside by Deinococcus geothermalis Amylosucrase. Molecules, 2022, 27, 4074.	3.8	5
3	Application of Biotransformation-Guided Purification in Chinese Medicine: An Example to Produce Butin from Licorice. Catalysts, 2022, 12, 718.	3.5	6
4	Biotransformation of celastrol to a novel, well-soluble, low-toxic and anti-oxidative celastrol-29-O-β-glucoside by Bacillus glycosyltransferases. Journal of Bioscience and Bioengineering, 2021, 131, 176-182.	2.2	10
5	Production of a new triterpenoid disaccharide saponin from sequential glycosylation of ganoderic acid A by 2 <i>Bacillus</i> glycosyltransferases. Bioscience, Biotechnology and Biochemistry, 2021, 85, 687-690.	1.3	3
6	One-Pot Bi-Enzymatic Cascade Synthesis of Novel Ganoderma Triterpenoid Saponins. Catalysts, 2021, 11, 580.	3.5	5
7	Glycosylation of Ganoderic Acid G by Bacillus Glycosyltransferases. International Journal of Molecular Sciences, 2021, 22, 9744.	4.1	4
8	Enzymatic Synthesis of Novel Vitexin Glucosides. Molecules, 2021, 26, 6274.	3.8	9
9	Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase. Fermentation, 2021, 7, 232.	3.0	6
10	Complete Genome Sequence of the Soil-Isolated Psychrobacillus sp. Strain AK 1817, Capable of Biotransforming the Ergostane Triterpenoid Antcin K. Microbiology Resource Announcements, 2021, 10, e0124220.	0.6	0
11	Improving Aqueous Solubility of Natural Antioxidant Mangiferin through Glycosylation by Maltogenic Amylase from Parageobacillus galactosidasius DSM 18751. Antioxidants, 2021, 10, 1817.	5.1	8
12	Glycosylation of Ganoderic Acid A via Recombinant Glycosyltransferase of Bacillus subtilis Under Acidic Operating Condition. FASEB Journal, 2020, 34, 1-1.	0.5	0
13	A Genome-Centric Approach Reveals a Novel Glycosyltransferase from the GA A07 Strain of Bacillus thuringiensis Responsible for Catalyzing 15-O-Glycosylation of Ganoderic Acid A. International Journal of Molecular Sciences, 2019, 20, 5192.	4.1	8
14	A New Triterpenoid Glucoside from a Novel Acidic Glycosylation of Ganoderic Acid A via Recombinant Glycosyltransferase of Bacillus subtilis. Molecules, 2019, 24, 3457.	3.8	11
15	Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Deinococcus geothermalis. Molecules, 2019, 24, 2236.	3.8	21
16	Sequential Biotransformation of Antcin K by Bacillus subtilis ATCC 6633. Catalysts, 2018, 8, 349.	3.5	7
17	Biotransformation of Ganoderic Acid A to 3-O-Acetyl Ganoderic Acid A by Soil-isolated Streptomyces sp Fermentation, 2018, 4, 101.	3.0	2
18	Uridine Diphosphate-Dependent Glycosyltransferases from Bacillus subtilis ATCC 6633 Catalyze the 15-O-Glycosylation of Ganoderic Acid A. International Journal of Molecular Sciences, 2018, 19, 3469.	4.1	14

TE-SHENG CHANG

#	Article	IF	CITATIONS
19	Production of New Isoflavone Glucosides from Glycosylation of 8-Hydroxydaidzein by Glycosyltransferase from Bacillus subtilis ATCC 6633. Catalysts, 2018, 8, 387.	3.5	17
20	New Triterpenoid from Novel Triterpenoid 15-O-Glycosylation on Ganoderic Acid A by Intestinal Bacteria of Zebrafish. Molecules, 2018, 23, 2345.	3.8	13
21	Production and Anti-Melanoma Activity of Methoxyisoflavones from the Biotransformation of Genistein by Two Recombinant Escherichia coli Strains. Molecules, 2017, 22, 87.	3.8	17
22	Biotransformation of Ergostane Triterpenoid Antcin K from Antrodia cinnamomea by Soil-Isolated Psychrobacillus sp. AK 1817. Catalysts, 2017, 7, 299.	3.5	10
23	Improving Free Radical Scavenging Activity of Soy Isoflavone Glycosides Daidzin and Genistin by 3′-Hydroxylation Using Recombinant Escherichia coli. Molecules, 2016, 21, 1723.	3.8	23
24	Biotransformation of isoflavones daidzein and genistein by recombinant Pichia pastoris expressing membrane-anchoring and reductase fusion chimeric CYP105D7. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 26-31.	5.3	9
25	Improving 3ïį¼²ïį¼²-Hydroxygenistein Production in Recombinant Pichia pastoris Using Periodic Hydrogen Peroxide-Shocking Strategy. Journal of Microbiology and Biotechnology, 2016, 26, 498-502.	2.1	16
26	Production of Two Novel Methoxy-Isoflavones from Biotransformation of 8-Hydroxydaidzein by Recombinant Escherichia coli Expressing O-Methyltransferase SpOMT2884 from Streptomyces peucetius. International Journal of Molecular Sciences, 2015, 16, 27816-27823.	4.1	14
27	Identification of 3′-hydroxygenistein as a potent melanogenesis inhibitor from biotransformation of genistein by recombinant Pichia pastoris. Process Biochemistry, 2015, 50, 1614-1617.	3.7	18
28	Inhibition of Melanogenesis by Yeast Extracts from Cultivations of Recombinant Pichia pastoris Catalyzing ortho-Hydroxylation of Flavonoids. Current Pharmaceutical Biotechnology, 2015, 16, 1085-1093.	1.6	6
29	Isolation, Bioactivity, and Production of ortho-Hydroxydaidzein and ortho-Hydroxygenistein. International Journal of Molecular Sciences, 2014, 15, 5699-5716.	4.1	42
30	Production of ortho-hydroxydaidzein derivatives by a recombinant strain of Pichia pastoris harboring a cytochrome P450 fusion gene. Process Biochemistry, 2013, 48, 426-429.	3.7	20
31	Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity. Materials, 2012, 5, 1661-1685.	2.9	194
32	Melanogenesis Inhibition by Homoisoflavavone Sappanone A from Caesalpinia sappan. International Journal of Molecular Sciences, 2012, 13, 10359-10367.	4.1	22
33	Inhibitory effect of homochlorcyclizine on melanogenesis in α-melanocyte stimulating hormone-stimulated mouse B16 melanoma cells. Archives of Pharmacal Research, 2012, 35, 119-127.	6.3	16
34	<i>In Vitro</i> and <i>in Vivo</i> Melanogenesis Inhibition by Biochanin A from <i>Trifolium pratense</i> . Bioscience, Biotechnology and Biochemistry, 2011, 75, 914-918.	1.3	59
35	Evaluation of in Vitro and in Vivo Depigmenting Activity of Raspberry Ketone from Rheum officinale. International Journal of Molecular Sciences, 2011, 12, 4819-4835.	4.1	69
36	Murine tyrosinase Inhibitors from <i>Cynanchum bungei</i> and evaluation of <i>in vitro</i> and <i>in vivo</i> depigmenting activity. Experimental Dermatology, 2011, 20, 720-724.	2.9	31

TE-SHENG CHANG

#	Article	IF	CITATIONS
37	Melanogenesis Inhibitory Activity of Two Generic Drugs: Cinnarizine and Trazodone in Mouse B16 Melanoma Cells. International Journal of Molecular Sciences, 2011, 12, 8787-8796.	4.1	9
38	Inhibitory effect of danazol on melanogenesis in mouse B16 melanoma cells. Archives of Pharmacal Research, 2010, 33, 1959-1965.	6.3	10
39	Identifying 8-hydroxynaringenin as a suicide substrate of mushroom tyrosinase. Journal of Cosmetic Science, 2010, 61, 205-10.	0.1	10
40	Evaluation of Depigmenting Activity by 8-Hydroxydaidzein in Mouse B16 Melanoma Cells and Human Volunteers. International Journal of Molecular Sciences, 2009, 10, 4257-4266.	4.1	48
41	An Updated Review of Tyrosinase Inhibitors. International Journal of Molecular Sciences, 2009, 10, 2440-2475.	4.1	1,138
42	Tyrosinase inhibitors isolated from the roots of Paeonia suffruticosa. Journal of Cosmetic Science, 2009, 60, 347-52.	0.1	17
43	8-Hydroxydaidzein is unstable in alkaline solutions. Journal of Cosmetic Science, 2009, 60, 353-7.	0.1	3
44	Metabolism of the Soy Isoflavones Daidzein and Genistein by Fungi Used in the Preparation of Various Fermented Soybean Foods. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1330-1333.	1.3	35
45	Two Potent Suicide Substrates of Mushroom Tyrosinase: 7,8,4â€~-Trihydroxyisoflavone and 5,7,8,4â€~-Tetrahydroxyisoflavone. Journal of Agricultural and Food Chemistry, 2007, 55, 2010-2015.	5.2	53
46	Mushroom tyrosinase inhibitory effects of isoflavones isolated from soygerm koji fermented with Aspergillus oryzae BCRC 32288. Food Chemistry, 2007, 105, 1430-1438.	8.2	67
47	Identifying 6,7,4′-Trihydroxyisoflavone as a Potent Tyrosinase Inhibitor. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1999-2001	1.3	63