Takumi Mizuno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4407127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of 2-Arylbenzothiazoles from Nitrobenzenes, Benzylamines, and Elemental Sulfur via Redox Cyclization. Synlett, 2022, 33, 386-390.	1.8	2
2	Transition-Metal-Free Synthesis of 2-Substituted Benzothiazoles from Nitrobenzenes, Methylheteroaryl Compounds, and Elemental Sulfur, Based on Nitro-Methyl Redox-Neutral Cyclization. Journal of Organic Chemistry, 2020, 85, 15213-15220.	3.2	5
3	Metal- and base-free synthesis of aryl bromides from arylhydrazines. Tetrahedron Letters, 2020, 61, 151959.	1.4	3
4	Monocationic porphyrin dyads with fullerene as the electron-accepting material. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1535-1541.	0.8	1
5	Synthesis of Aryl lodides from Arylhydrazines and lodine. ACS Omega, 2018, 3, 9814-9821.	3.5	18
6	Regioselective Synthesis of [6,6]-Phenyl-C71-Butyric Acid Methyl Esters via Sulfur Ylides for Use in Bulk Heterojunction Solar Cells. Synlett, 2017, 28, 1457-1462.	1.8	5
7	Transition-Metal-Free and Oxidant-Free Cross-Coupling of Arylhydrazines with Disulfides: Base-Promoted Synthesis of Unsymmetrical Aryl Sulfides. Journal of Organic Chemistry, 2017, 82, 6647-6655.	3.2	36
8	Regioselective Radical Arylation of Aromatic Diamines with Arylhydrazines. Synthesis, 2017, 49, 1623-1631.	2.3	12
9	Atomâ€Economical Synthesis of Unsymmetrical Diaryl Selenides from Arylhydrazines and Diaryl Diselenides. European Journal of Organic Chemistry, 2017, 2017, 4928-4934.	2.4	27
10	Synthesis and optoelectronic properties of hexachloro- and hexaiodosubnaphthalocyanines as organic electronic materials. Tetrahedron, 2016, 72, 4918-4924.	1.9	9
11	Metal-free C–H arylation of aminoheterocycles with arylhydrazines. Tetrahedron, 2016, 72, 4132-4140.	1.9	24
12	Superacidâ€catalyzed Friedel–Crafts phosphination of 2â€hydroxybiphenyls with phosphorus trichloride. Heteroatom Chemistry, 2016, 27, 336-342.	0.7	6
13	p-n interface stabilization of planar heterojunction organic photovoltaics by an ethyleneoxy side chain of methanofullerenes. Synthetic Metals, 2016, 215, 223-228.	3.9	2
14	Controlling the Polarity of Fullerene Derivatives to Optimize Nanomorphology in Blend Films. ACS Applied Materials & Interfaces, 2016, 8, 4803-4810.	8.0	21
15	Hydrolysis of Diazonium Salts Using a Twoâ€Phase System (CPME and Water). Heteroatom Chemistry, 2015, 26, 411-416.	0.7	10
16	Preparation of copper complexes coordinated by N ²¹ ,N ²² -etheno bridged porphyrin and the application to photooxidation of phenol derivatives. Journal of Porphyrins and Phthalocyanines, 2015, 19, 786-793.	0.8	2
17	Facile Synthesis of Methanofullerenes in an Aqueous Two-Phase System under Photoirradiation Conditions. Synlett, 2015, 26, 960-964.	1.8	5
18	Redox-Neutral Iron–Sulfur Promoted Transformation of 2-Nitrophenols and 2,6-Disubstituted p-Cresols into 2-Arylbenzoxazoles. Synlett, 2014, 25, 1565-1570.	1.8	6

#	Article	IF	CITATIONS
19	Synthesis and properties of novel fluorinated subnaphthalocyanines for organic photovoltaic cells. Tetrahedron Letters, 2014, 55, 4564-4567.	1.4	26
20	Facile Synthesis of [6,6]-Phenyl-C61/71-Butyric Acid Methyl Esters via Sulfur Ylides for Bulk-Heterojunction Solar Cell. Synlett, 2013, 24, 1988-1992.	1.8	4
21	Design of Fullerene Derivatives for Stabilizing LUMO Energy using Donor Groups Placed in Spatial Proximity to the C ₆₀ Cage. Journal of Organic Chemistry, 2012, 77, 9038-9043.	3.2	30
22	Is CO ₂ fixation promoted through the formation of DBU bicarbonate salt?. Heteroatom Chemistry, 2012, 23, 276-280.	0.7	12
23	Facile sulfur-assisted carbonylation of diaminoresorcinol with carbon monoxide. Heteroatom Chemistry, 2012, 23, 111-116.	0.7	3
24	New synthesis of glycerol carbonate from glycerol using sulfurâ€assisted carbonylation with carbon monoxide. Heteroatom Chemistry, 2010, 21, 99-102.	0.7	3
25	Facile synthesis of glycerol carbonate from glycerol using seleniumâ€catalyzed carbonylation with carbon monoxide. Heteroatom Chemistry, 2010, 21, 541-545.	0.7	60
26	Novel oxidation of toluenes catalyzed by reusable vanadyl(IV) sulfate under mild conditions with molecular oxygen. Tetrahedron Letters, 2010, 51, 2225-2227.	1.4	15
27	Solvent-Free Iron(III) Chloride Catalyzed O-, S-, and N-Acylation under Mild Conditions. Synlett, 2010, 2010, 253-255.	1.8	13
28	Efficient Solvent-Free Synthesis of Urea Derivatives Using Selenium-Catalyzed Carbonylation of Amines with Carbon Monoxide and Oxygen. Synthesis, 2010, 2010, 4251-4255.	2.3	20
29	Synthesis of Unsymmetrical Ureas by Sulfur-Assisted Carbonylation with Carbon Monoxide and Oxidation with Molecular Oxygen under Mild ConditionsÂ: Synthesis, 2009, 2009, 2492-2496.	2.3	20
30	Pd-Catalyzed Cross-Coupling Reactions of Pyridine Carboxylic Acid Chlorides with Alkylzinc Reagents. Synlett, 2009, 2009, 1091-1094.	1.8	14
31	Novel synthesis of <i>N,N</i> ′â€dialkyl cyclic ureas using sulfurâ€assisted carbonylation and oxidation. Heteroatom Chemistry, 2009, 20, 64-68.	0.7	5
32	Solvent-Free Basic or KF/Alumina-Assisted Dehydrogenation of Hydrazo Compounds. Synlett, 2007, 2007, 2124-2126.	1.8	9
33	Solvent-Free Synthesis of Urea Derivatives from Primary Amines and Sulfur under Carbon Monoxide and Oxygen at Atmospheric Pressure. Synthesis, 2007, 2007, 3135-3140.	2.3	14
34	Solvent-Free Synthesis of Quinazoline-2,4(1H,3H)-diones Using Carbon Dioxide and a Catalytic Amount of DBU. Synthesis, 2007, 2007, 2524-2528.	2.3	64
35	Practical Synthesis of Urea Derivatives from Primary Amines, Carbon Monoxide, Sulfur, and Oxygen under Mild Conditions. Synthesis, 2006, 2006, 2825-2830.	2.3	22
36	Solvent-assisted thiocarboxylation of amines and alcohols with carbon monoxide and sulfur under mild conditions. Tetrahedron, 2005, 61, 9157-9163.	1.9	48

#	Article	IF	CITATIONS
37	The Simple Solvent-Free Synthesis of 1H-Quinazoline-2,4-diones Using Supercritical Carbon Dioxide and Catalytic Amount of Base ChemInform, 2005, 36, no.	0.0	0
38	Solvent-Assisted Thiocarboxylation of Amines and Alcohols with Carbon Monoxide and Sulfur under Mild Conditions ChemInform, 2005, 36, no.	0.0	0
39	Practical synthesis of S-alkyl thiocarbamate herbicides by carbonylation of amines with carbon monoxide and sulfur. Tetrahedron, 2004, 60, 2869-2873.	1.9	33
40	Zinc Metal Promoted Nucleophilic Addition of Nonactivated Alkyl Iodides to Aromatic Aldimines in the Presence of Chlorotrimethylsilane in Ethyl Acetate—DMI ChemInform, 2004, 35, no.	0.0	0
41	Practical Synthesis of S-Alkyl Thiocarbamate Herbicides by Carbonylation of Amines with Carbon Monoxide and Sulfur ChemInform, 2004, 35, no.	0.0	0
42	Zinc metal-promoted nucleophilic addition of nonactivated alkyl iodides to aromatic aldimines in the presence of chlorotrimethylsilane in ethyl acetate–DMI. Tetrahedron Letters, 2004, 45, 1083-1086.	1.4	20
43	The simple solvent-free synthesis of 1H-quinazoline-2,4-diones using supercritical carbon dioxide and catalytic amount of base. Tetrahedron Letters, 2004, 45, 7073-7075.	1.4	100
44	Non-phosgene Synthesis of Benzyl Chloroformate (CbzCl) ChemInform, 2003, 34, no-no.	0.0	0
45	Synthesis of 2-Oxazolidones by Sulfur-Assisted Thiocarboxylation with Carbon Monoxide and Oxidative Cyclization with Molecular Oxygen under Mild Conditions ChemInform, 2003, 34, no.	0.0	0
46	Facile S-Alkyl Thiocarbamate Synthesis by a Novel DBU-Assisted Carbonylation of Amines with Carbon Monoxide and Sulfur ChemInform, 2003, 34, no.	0.0	0
47	Facile S-alkyl thiocarbamate synthesis by a novel DBU-assisted carbonylation of amines with carbon monoxide and sulfur. Tetrahedron, 2003, 59, 1327-1331.	1.9	29
48	Highly efficient synthesis of 1H-quinazoline-2,4-diones using carbon dioxide in the presence of catalytic amount of DBU. Tetrahedron, 2002, 58, 3155-3158.	1.9	101
49	Synthesis of 2-oxazolidones by sulfur-assisted thiocarboxylation with carbon monoxide and oxidative cyclization with molecular oxygen under mild conditions. Tetrahedron, 2002, 58, 7805-7808.	1.9	26
50	Benzyl chloroformate (CbzCl) synthesis using carbon monoxide as a carbonyl source. Tetrahedron, 2002, 58, 10011-10015.	1.9	11
51	Non-phosgene synthesis of benzyl chloroformate (CbzCl). Tetrahedron Letters, 2002, 43, 7765-7767.	1.4	11
52	Synthesis of quinazolines using carbon dioxide (or carbon monoxide with sulfur) under mild conditions. Heteroatom Chemistry, 2000, 11, 428-433.	0.7	39
53	Synthesis of 2,4-dihydroxyquinazolines using carbon dioxide in the presence of DBU under mild conditions. Tetrahedron Letters, 2000, 41, 1051-1053.	1.4	104
54	Synthesis of Aromatic Urea Herbicides by the Selenium-assisted Carbonylation using Carbon Monoxide With Sulfur. Synthetic Communications, 2000, 30, 1675-1688.	2.1	35

#	Article	IF	CITATIONS
55	Synthesis of Sulfonylurea Derivatives Used as Oral Antidiabetics by the Selenium-Assisted Carbonylation Using Carbon Monoxide with Sulfur. Synthetic Communications, 2000, 30, 3081-3089.	2.1	11
56	Reductive carbonylation of nitrobenzenes catalyzed by a new binuclear rhodium complex. Journal of Molecular Catalysis A, 1997, 121, 119-122.	4.8	21
57	Carbonylation of aryl and alkyl halides catalyzed by a binuclear rhodium hydroxide complex. Journal of Molecular Catalysis A, 1997, 123, 21-24.	4.8	14
58	Selective and one-pot formation of phenols by anodic oxidation. Tetrahedron, 1996, 52, 3889-3896.	1.9	45
59	Reaction of thiolates with carbon monoxide. Tetrahedron Letters, 1995, 36, 1533-1536.	1.4	13
60	Regioselective azidomethoxylation of enol ethers by anodic oxidation. Tetrahedron Letters, 1995, 36, 7483-7486.	1.4	23
61	Novel synthesis of S-alkyl thiocarbamates from amines, carbon monoxide, elemental sulfur, and alkyl halides in the presence of a selenium catalyst. Tetrahedron, 1994, 50, 5669-5680.	1.9	39
62	Convenient synthesis of heterocycles by sulfur-assisted carbonylation at ordinary pressure and temperature. Heteroatom Chemistry, 1994, 5, 437-440.	0.7	11
63	Facile synthesis of urea derivatives under mild conditions. Heteroatom Chemistry, 1993, 4, 455-458.	0.7	9
64	Reactions of unstable dialkylcarbamoyl lithiums with sulfur compounds. Tetrahedron, 1993, 49, 2403-2412.	1.9	20
65	Facile Synthesis of Oxamides by Efficient Trapping of Carbamoyl Lithiums with Isocyanates. Synthetic Communications, 1993, 23, 2139-2144.	2.1	10
66	Facile synthesis of S-alkyl thiocarbamates through reaction of carbamoyl lithium with elemental sulfur. Tetrahedron Letters, 1991, 32, 6867-6868.	1.4	69
67	Facile synthesis of 2,4-dioxo-1,2,3,4-tetrahydroquinazolines by sulfur-assisted carbonylation with carbon monoxide. Heteroatom Chemistry, 1991, 2, 473-475.	0.7	20
68	Facile Synthesis ofS,S-Dialkyl Dithiocarbonates from Water, Sulfur, Carbon Monoxide, and Alkyl Halides. Chemistry Letters, 1990, 19, 811-812.	1.3	7
69	A new selenium catalyzed synthesis of S-Alkyl carbonothioates from alcohols, carbon monoxide, sulfur and alkyl halides. Tetrahedron Letters, 1990, 31, 4773-4776.	1.4	18
70	A facile method for generation of carbon oxide sulfide. Heteroatom Chemistry, 1990, 1, 157-159.	0.7	10
71	Facile Stereoselective Synthesis of 4-Alkylidene-2-oxo-1,3-oxathiolanes from 2-Alkyn-1-ols, Carbon Monoxide, and Sulfur. Synthesis, 1989, 1989, 770-771.	2.3	17
72	Facile Synthesis of Carbonates from Alcohols and Carbon Monoxide Promoted by Elemental Sulfur. Synthesis, 1989, 1989, 636-638.	2.3	14

#	Article	IF	CITATIONS
73	Die selenkatalysierte Synthese von <i>S</i> â€Alkylthiocarbamaten aus Aminen, Kohlenmonoxid, Schwefel und Alkylhalogeniden. Angewandte Chemie, 1989, 101, 476-477.	2.0	6
74	Selenium-Catalyzed Synthesis ofS-Alkyl Thiocarbamates from Amines, Carbon Monoxide, Sulfur, and Alkyl Halides. Angewandte Chemie International Edition in English, 1989, 28, 452-453.	4.4	28
75	Sulfur-assisted O-carbonylation of alcohols with carbon monoxide in the presence of dbu. Tetrahedron Letters, 1988, 29, 4767-4768.	1.4	28
76	Facile Synthesis of 4-Hydroxycoumarins by Sulfur-Assisted Carbonylation of 2′-Hydroxyacetophenones with Carbon Monoxide. Synthesis, 1988, 1988, 257-259.	2.3	32
77	Sulfur-Promoted Redox Cyclization of 2,2′-Dinitrodiphenyl Disulfides and Benzylamines. Synthesis, 0, 53, .	2.3	1