Xiaoling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/440651/publications.pdf

Version: 2024-02-01

		87888	118850
63	6,985 citations	38	62
papers	citations	h-index	g-index
68	68	68	9325
00	00	00	9323
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Aging exaggerates acuteâ€onâ€chronic alcoholâ€induced liver injury in mice and humans by inhibiting neutrophilic sirtuin 1â€C/EBPαâ€miRNAâ€223 axis. Hepatology, 2022, 75, 646-660.	7.3	29
2	Metabolic and epigenetic regulation of endoderm differentiation. Trends in Cell Biology, 2022, 32, 151-164.	7.9	4
3	Myeloid Ikaros–SIRT1 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed mouse and human liver. Journal of Hepatology, 2022, 76, 896-909.	3.7	43
4	SIRT1 regulates cardiomyocyte alignment during maturation. Journal of Cell Science, 2022, 135, .	2.0	2
5	Uterine-specific SIRT1 deficiency confers premature uterine aging and impairs invasion and spacing of blastocyst, and stromal cell decidualization, in mice. Molecular Human Reproduction, 2022, 28, .	2.8	9
6	Regulation of the Intestinal Extra-Adrenal Steroidogenic Pathway Component LRH-1 by Glucocorticoids in Ulcerative Colitis. Cells, 2022, 11, 1905.	4.1	3
7	Sirtuins in metabolic and epigenetic regulation of stem cells. , 2021, , 25-37.		2
8	SRSF1 inhibits autophagy through regulating Bcl-x splicing and interacting with PIK3C3 in lung cancer. Signal Transduction and Targeted Therapy, 2021, 6, 108.	17.1	44
9	Predicting tumor response to drugs based on gene-expression biomarkers of sensitivity learned from cancer cell lines. BMC Genomics, 2021, 22, 272.	2.8	25
10	Histone crotonylation promotes mesoendodermal commitment of human embryonic stem cells. Cell Stem Cell, 2021, 28, 748-763.e7.	11.1	59
11	SIRT1 regulates sphingolipid metabolism and neural differentiation of mouse embryonic stem cells through c-Myc-SMPDL3B. ELife, 2021, 10, .	6.0	22
12	Trending topics of SIRT1 in tumorigenicity. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129952.	2.4	34
13	A simple, efficient, and reliable endoderm differentiation protocol for human embryonic stem cells using crotonate. STAR Protocols, 2021, 2, 100659.	1.2	5
14	RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. Journal of Clinical Investigation, 2021, 131, .	8.2	103
15	Intestinal epithelial glucocorticoid receptor promotes chronic inflammation–associated colorectal cancer. JCI Insight, 2021, 6, .	5.0	9
16	Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARI± dependent. Molecular Metabolism, 2020, 42, 101087.	6.5	23
17	HNF4 $\hat{l}\pm$ regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nature Communications, 2020, 11, 3978.	12.8	73
18	Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway. Cell Metabolism, 2020, 31, 564-579.e7.	16.2	130

#	Article	IF	Citations
19	Dietary Methionine in T Cell Biology and Autoimmune Disease. Cell Metabolism, 2020, 31, 211-212.	16.2	8
20	Bacteria boost host NAD metabolism. Aging, 2020, 12, 23425-23426.	3.1	0
21	Glypican 6 is a putative biomarker for metastatic progression of cutaneous melanoma. PLoS ONE, 2019, 14, e0218067.	2.5	14
22	MiR-29 Regulates de novo Lipogenesis in the Liver and Circulating Triglyceride Levels in a Sirt1-Dependent Manner. Frontiers in Physiology, 2019, 10, 1367.	2.8	12
23	CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data. PLoS Computational Biology, 2019, 15, e1007510.	3.2	42
24	Sirtuins in Metabolic and Epigenetic Regulation of Stem Cells. Trends in Endocrinology and Metabolism, 2019, 30, 177-188.	7.1	47
25	Modeling and Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning. Cell Systems, 2018, 7, 510-520.e4.	6.2	8
26	p300-Mediated Lysine 2-Hydroxyisobutyrylation Regulates Glycolysis. Molecular Cell, 2018, 70, 663-678.e6.	9.7	126
27	Haploinsufficiency of SIRT1 Enhances Glutamine Metabolism and Promotes Cancer Development. Current Biology, 2017, 27, 483-494.	3.9	59
28	Cancer-associated Fibroblasts Promote Irradiated Cancer Cell Recovery Through Autophagy. EBioMedicine, 2017, 17, 45-56.	6.1	103
29	Obesity-Linked Phosphorylation of SIRT1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver. Molecular and Cellular Biology, 2017, 37, .	2.3	37
30	Intestinal Epithelial Sirtuin 1 Regulates Intestinal Inflammation During Aging in Mice by Altering the Intestinal Microbiota. Gastroenterology, 2017, 153, 772-786.	1.3	123
31	The phosphorylation status of T522 modulates tissueâ€specific functions of <scp>SIRT</scp> 1 in energy metabolism in mice. EMBO Reports, 2017, 18, 841-857.	4.5	7
32	Methionine metabolism is essential for <scp>SIRT</scp> 1â€regulated mouse embryonic stem cell maintenance and embryonic development. EMBO Journal, 2017, 36, 3175-3193.	7.8	71
33	Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3. Journal of Biological Chemistry, 2017, 292, 17312-17323.	3.4	75
34	Cysteine transporter SLC3A1 promotes breast cancer tumorigenesis. Theranostics, 2017, 7, 1036-1046.	10.0	50
35	Leishmania infantum Modulates Host Macrophage Mitochondrial Metabolism by Hijacking the SIRT1-AMPK Axis. PLoS Pathogens, 2015, 11, e1004684.	4.7	96
36	Deletion of SIRT1 From Hepatocytes in Mice Disrupts Lipin-1 Signaling and Aggravates Alcoholic Fatty Liver. Gastroenterology, 2014, 146, 801-811.	1.3	167

#	Article	IF	CITATIONS
37	SIRT1-Mediated Deacetylation of CRABPII Regulates Cellular Retinoic Acid Signaling and Modulates Embryonic Stem Cell Differentiation. Molecular Cell, 2014, 55, 843-855.	9.7	60
38	Intestine-Specific Deletion of SIRT1 in Mice Impairs DCoH2–HNF-1α–FXR Signaling and Alters Systemic Bile Acid Homeostasis. Gastroenterology, 2014, 146, 1006-1016.	1.3	57
39	Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters <i>via</i> Protein Kinase A and Sirtuin-1 in Mouse and Human. Antioxidants and Redox Signaling, 2014, 20, 15-30.	5.4	88
40	Elevated micro < scp>RNA < / scp>â€34a in obesity reduces < scp>NAD < / scp> < sup> + < / sup> levels and < scp>SIRT < / scp>1 activity by directly targeting < scp>NAMPT < / scp>. Aging Cell, 2013, 12, 1062-1072.	6.7	210
41	SIRT4 Represses Peroxisome Proliferator-Activated Receptor \hat{l}_{\pm} Activity To Suppress Hepatic Fat Oxidation. Molecular and Cellular Biology, 2013, 33, 4552-4561.	2.3	132
42	SIRT1 and energy metabolism. Acta Biochimica Et Biophysica Sinica, 2013, 45, 51-60.	2.0	263
43	The ways and means that fine tune Sirt1 activity. Trends in Biochemical Sciences, 2013, 38, 160-167.	7. 5	139
44	The NAD+-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status. Scientific Reports, 2012, 2, 640.	3.3	38
45	Systemic SIRT1 insufficiency results in disruption of energy homeostasis and steroid hormone metabolism upon highâ€fatâ€diet feeding. FASEB Journal, 2012, 26, 656-667.	0.5	52
46	Hepatic Deletion of SIRT1 Decreases Hepatocyte Nuclear Factor $1 < i > \hat{l} + < /i > /Farnesoid X$ Receptor Signaling and Induces Formation of Cholesterol Gallstones in Mice. Molecular and Cellular Biology, 2012, 32, 1226-1236.	2.3	75
47	Sirtuin 1 in lipid metabolism and obesity. Annals of Medicine, 2011, 43, 198-211.	3.8	241
48	Mammalian Sirtuins and Energy Metabolism. International Journal of Biological Sciences, 2011, 7, 575-587.	6.4	169
49	DYRK1A and DYRK3 Promote Cell Survival through Phosphorylation and Activation of SIRT1. Journal of Biological Chemistry, 2010, 285, 13223-13232.	3.4	210
50	Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes and Development, 2010, 24, 1403-1417.	5.9	303
51	Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22623-22628.	7.1	122
52	Myeloid Deletion of SIRT1 Induces Inflammatory Signaling in Response to Environmental Stress. Molecular and Cellular Biology, 2010, 30, 4712-4721.	2.3	281
53	Surprising sirtuin crosstalk in the heart. Aging, 2010, 2, 129-132.	3.1	13
54	Hepatocyte-Specific Deletion of SIRT1 Alters Fatty Acid Metabolism and Results in Hepatic Steatosis and Inflammation. Cell Metabolism, 2009, 9, 327-338.	16.2	965

XIAOLING LI

#	Article	IF	CITATION
55	SIRT1 performs a balancing act on the tight-rope toward longevity. Aging, 2009, 1, 669-673.	3.1	18
56	SIRT1 Deacetylates and Positively Regulates the Nuclear Receptor LXR. Molecular Cell, 2007, 28, 91-106.	9.7	576
57	The Dynamin-like GTPase DLP1 Is Essential for Peroxisome Division and Is Recruited to Peroxisomes in Part by PEX11. Journal of Biological Chemistry, 2003, 278, 17012-17020.	3.4	198
58	PEX11 promotes peroxisome division independently of peroxisome metabolism. Journal of Cell Biology, 2002, 156, 643-651.	5.2	137
59	PEX11α Is Required for Peroxisome Proliferation in Response to 4-Phenylbutyrate but Is Dispensable for Peroxisome Proliferator-Activated Receptor Alpha-Mediated Peroxisome Proliferation. Molecular and Cellular Biology, 2002, 22, 8226-8240.	2.3	149
60	PEX $11\hat{l}^2$ Deficiency Is Lethal and Impairs Neuronal Migration but Does Not Abrogate Peroxisome Function. Molecular and Cellular Biology, 2002, 22, 4358-4365.	2.3	158
61	Inhibitors of Copi and Copii Do Not Block PEX3-Mediated Peroxisome Synthesis. Journal of Cell Biology, 2000, 149, 1345-1360.	5.2	145
62	Pex19 Binds Multiple Peroxisomal Membrane Proteins, Is Predominantly Cytoplasmic, and Is Required for Peroxisome Membrane Synthesis. Journal of Cell Biology, 2000, 148, 931-944.	5.2	270
63	Coordination of an Array of Signaling Proteins through Homo- and Heteromeric Interactions Between PDZ Domains and Target Proteins. Journal of Cell Biology, 1998, 142, 545-555.	5.2	219