
Kazuhiko Saeki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4406146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenolic Acids Induce Nod Factor Production in <i>Lotus japonicus</i> – <i>Mesorhizobium</i> Symbiosis. Microbes and Environments, 2022, 37, n/a.	1.6	9
2	Assessment of Polygala paniculata (Polygalaceae) characteristics for evolutionary studies of legume–rhizobia symbiosis. Journal of Plant Research, 2020, 133, 109-122.	2.4	3
3	<i>Lotus</i> Accessions Possess Multiple Checkpoints Triggered by Different Type III Secretion System Effectors of the Wide-Host-Range Symbiont <i>Bradyrhizobium elkanii</i> USDA61. Microbes and Environments, 2020, 35, n/a.	1.6	20
4	Whole-Genome Sequence of the Nitrogen-Fixing Symbiotic Rhizobium Mesorhizobium loti Strain TONO. Genome Announcements, 2016, 4, .	0.8	7
5	Genome Analysis of a Novel Bradyrhizobium sp. DOA9 Carrying a Symbiotic Plasmid. PLoS ONE, 2015, 10, e0117392.	2.5	52
6	Peribacteroid solution of soybean root nodules partly induces genomic loci for differentiation into bacteroids of free-living Bradyrhizobium japonicum cells. Soil Science and Plant Nutrition, 2015, 61, 461-470.	1.9	4
7	Genome Sequence and Gene Functions in Mesorhizobium loti and Relatives. Compendium of Plant Genomes, 2014, , 41-57.	0.5	4
8	Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proceedings of the United States of America, 2013, 110, 17131-17136.	7.1	245
9	LjMATE1: A Citrate Transporter Responsible for Iron Supply to the Nodule Infection Zone of Lotus japonicus. Plant and Cell Physiology, 2013, 54, 585-594.	3.1	70
10	Commonalities and Differences among Symbiosis Islands of Three <i>Mesorhizobium loti</i> Strains. Microbes and Environments, 2013, 28, 275-278.	1.6	17
11	Involvement of a Novel Genistein-Inducible Multidrug Efflux Pump of <i>Bradyrhizobium japonicum</i> Early in the Interaction with <i>Glycine max</i> (L.) Merr. Microbes and Environments, 2013, 28, 414-421.	1.6	16
12	Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: a focus on two legume-rhizobium model systems. Cellular and Molecular Life Sciences, 2011, 68, 1327-1339.	5.4	40
13	Identification and Functional Analysis of Type III Effector Proteins in Mesorhizobium loti. Molecular Plant-Microbe Interactions, 2010, 23, 223-234.	2.6	74
14	Temperature-Dependent Expression of Type III Secretion System Genes and Its Regulation in <i>Bradyrhizobium japonicum</i> . Molecular Plant-Microbe Interactions, 2010, 23, 628-637.	2.6	10
15	The bacA Gene Homolog, mlr7400, in Mesorhizobium loti MAFF303099 is Dispensable for Symbiosis with Lotus japonicus but Partially Capable of Supporting the Symbiotic Function of bacA in Sinorhizobium meliloti. Plant and Cell Physiology, 2010, 51, 1443-1452.	3.1	29
16	Functional Differences of Two Distinct Catalases in Mesorhizobium loti MAFF303099 under Free-Living and Symbiotic Conditions. Journal of Bacteriology, 2009, 191, 1463-1471.	2.2	19
17	Genomic comparison of <i>Bradyrhizobium japonicum</i> strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. ISME Journal, 2009, 3, 326-339.	9.8	67
18	Soybean Seed Extracts Preferentially Express Genomic Loci of Bradyrhizobium japonicum in the Initial Interaction with Soybean, Glycine max (L) Merr, DNA Research, 2008, 15, 201-214	3.4	30

ΚΑΖUΗΙΚΟ SAEKI

#	Article	IF	CITATIONS
19	Requirement for Mesorhizobium loti Ornithine Transcarbamoylase for Successful Symbiosis with Lotus japonicus as Revealed by an Unexpected Long-Range Genome Deletion. Plant and Cell Physiology, 2008, 49, 301-313.	3.1	11
20	The <i>Mesorhizobium loti purB</i> Gene Is Involved in Infection Thread Formation and Nodule Development in <i>Lotus japonicus</i> . Journal of Bacteriology, 2007, 189, 8347-8352.	2.2	23
21	Global Gene Expression in Bradyrhizobium japonicum Cultured with Vanillin, Vanillate, 4-Hydroxybenzoate and Protocatechuate. Microbes and Environments, 2006, 21, 240-250.	1.6	22
22	Characterization of the Lotus japonicus Symbiotic Mutant lot1 That Shows a Reduced Nodule Number and Distorted Trichomes. Plant Physiology, 2005, 137, 1261-1271.	4.8	31
23	Characteristic biological activities of lipopolysaccharides from <i>Sinorhizobium</i> and <i>Mesorhizobium</i> . Journal of Endotoxin Research, 2004, 10, 25-31.	2.5	8
24	Expression Islands Clustered on the Symbiosis Island of the Mesorhizobium loti Genome. Journal of Bacteriology, 2004, 186, 2439-2448.	2.2	205
25	Ordered Cosmid Library of the Mesorhizobium loti MAFF303099 Genome for Systematic Gene Disruption and Complementation Analysis. Plant and Cell Physiology, 2002, 43, 1542-1557.	3.1	24
26	A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. Journal of Biotechnology, 2002, 99, 279-293.	3.8	110
27	Primary Structure and Phylogenetic Analysis of the Coat Protein of a Toyama Isolate of Tobacco Necrosis Virus. Bioscience, Biotechnology and Biochemistry, 2001, 65, 719-724.	1.3	6
28	The Lotus Symbiont, Mesorhizobium loti: Molecular Genetic Techniques and Application. Journal of Plant Research, 2000, 113, 457-465.	2.4	45
29	Crystal structure of tobacco necrosis virus at 2.25 Ã resolution. Journal of Molecular Biology, 2000, 300, 153-169.	4.2	51
30	Electron Transport Pathway to Nitrogenase in Rhodobacter Capsulatus RNF complex and its Relatives in Non-Diazotrophs. , 2000, , 143-144.		0
31	Hyperproduction of Recombinant Ferredoxins in Escherichia coli by Coexpression of the ORF1-ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 Gene Cluster. Journal of Biochemistry, 1999, 126, 10-18.	1.7	177
32	The rnf gene products in Rhodobacter capsulatus play an essential role in nitrogen fixation during anaerobic DMSO-dependent growth in the dark. Archives of Microbiology, 1998, 169, 464-467.	2.2	36
33	Membrane Localization, Topology, and Mutual Stabilization of the <i>rnfABC</i> Gene Products in <i>Rhodobacter capsulatus</i> and Implications for a New Family of Energy-Coupling NADH Oxidoreductases. Biochemistry, 1997, 36, 5509-5521.	2.5	85
34	Site-specific Mutagenesis of Rhodobacter capsulatus Ferredoxin I, FdxN, That Functions in Nitrogen Fixation. Journal of Biological Chemistry, 1996, 271, 31399-31406.	3.4	23
35	Molecular Cloning and Nucleotide Sequences of cDNAs Encoding Subunits I, II, and IX of Euglena gracilis Mitochondrial Complex III1. Journal of Biochemistry, 1994, 115, 98-107.	1.7	15
36	Structural and Functional Diversity of Ferredoxins and Related Proteins. Advances in Inorganic Chemistry, 1992, , 223-280.	1.0	129

ΚΑΖUΗΙΚΟ SAEKI

#	Article	IF	CITATIONS
37	Evolutionary Aspects of Iron-Sulfur Proteins in Photosynthetic Apparatus. , 1992, , 491-498.		0
38	Transcriptional analysis of twoRhodobacter capsulatusferredoxins by translational fusion toEscherichia coli lacZ. FEBS Letters, 1991, 292, 13-16.	2.8	9
39	Two Distinct Ferredoxins from Rhodobacter capsulatus: Complete Amino Acid Sequences and Molecular Evolution1. Journal of Biochemistry, 1990, 108, 475-482.	1.7	24
40	A plant-ferredoxin-like gene is located upstream of ferredoxin I gene (fdxN) ofRhodobacter capsulatus. Nucleic Acids Research, 1990, 18, 1060-1060.	14.5	24
41	Purification and properties of ferredoxin and rubredoxin from Butyribacterium methylotrophicum. Journal of Bacteriology, 1989, 171, 4736-4741.	2.2	14
42	Ferredoxin and Rubredoxin from Butyribacterium methylotrophicum: Complete Primary Structures and Construction of Phylogenetic Trees1. Journal of Biochemistry, 1989, 106, 656-662.	1.7	19
43	The Protein Responsible for Center A/B in Spinach Photosystem I: Isolation with Iron-Sulfur Cluster(s) and Complete Sequence Analysis1. Journal of Biochemistry, 1988, 103, 962-968.	1.7	112
44	Pseudomonas stutzeri Ferredoxin: Close Similarity to Azotobacter vinelandii and Pseudomonas ovalis Ferredoxins1. Journal of Biochemistry, 1988, 104, 242-246.	1.7	26
45	Preliminary crystallographic study of a ribulose-1,5-bisphosphate carboxylase-oxygenase from Chromatium vinosum. Journal of Molecular Biology, 1986, 191, 577-578.	4.2	9
46	A Novel FAD-Protein that Allows Effective Reduction of Methyl Viologen by NADH (NADH-Methyl) Tj ETQq0 0 0 rg Characterization1. Journal of Biochemistry, 1986, 99, 423-435.	gBT /Overl 1.7	ock 10 Tf 50 2

47	barley Lear Peroxidase. Purification and Characterization1. Journal of biochemistry, 1900, 99, 403-494.	1./	27
48	Nucleotide Sequence and Genetic Analysis of the Region Essential for Functional Expression of the Gene for Ferredoxin I, <italic>fdxN</italic> , in <italic>Rhodobacter capsulatus</italic> : Sharing of One Upstream Activator Sequence in Opposite Directions by Two Operons Related to Nitrogen Fixation. Plant and Cell Physiology, 0, , .	3.1	3