
Henning Wackerhage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/440549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer catecholamine conundrum. Trends in Cancer, 2022, 8, 110-122.	7.4	13
2	Genes controlling skeletal muscle glucose uptake and their regulation by endurance and resistance exercise. Journal of Cellular Biochemistry, 2022, 123, 202-214.	2.6	7
3	Skeletal muscle phenotyping of Hippo gene-mutated mice reveals that Lats1 deletion increases the percentage of type I muscle fibers. Transgenic Research, 2022, 31, 227-237.	2.4	3
4	Effects of a taped filter mask on peak power, perceived breathlessness, heart rate, blood lactate and oxygen saturation during a graded exercise test in young healthy adults: a randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 2022, 14, 19.	1.7	7
5	Fusion of Normoxic- and Hypoxic-Preconditioned Myoblasts Leads to Increased Hypertrophy. Cells, 2022, 11, 1059.	4.1	3
6	Does a Hypertrophying Muscle Fibre Reprogramme its Metabolism Similar to a Cancer Cell?. Sports Medicine, 2022, 52, 2569-2578.	6.5	17
7	Effects of Acute and Chronic Resistance Exercise on the Skeletal Muscle Metabolome. Metabolites, 2022, 12, 445.	2.9	9
8	Aerosol particle emission increases exponentially above moderate exercise intensity resulting in superemission during maximal exercise. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
9	Contributions by the Cologne group to the development of lactate exercise testing and anaerobic threshold concepts in the 1970s and 1980s. Journal of Physiology, 2021, 599, 1713-1714.	2.9	4
10	Maternal vitamin B ₁₂ in mice positively regulates bone, but not muscle mass and strength in post-weaning and mature offspring. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R984-R993.	1.8	4
11	Personalized, Evidence-Informed Training Plans and Exercise Prescriptions for Performance, Fitness and Health. Sports Medicine, 2021, 51, 1805-1813.	6.5	18
12	Hypoxic Signaling in Skeletal Muscle Maintenance and Regeneration: A Systematic Review. Frontiers in Physiology, 2021, 12, 684899.	2.8	17
13	Physiological extremes of the human blood metabolome: A metabolomics analysis of highly glycolytic, oxidative, and anabolic athletes. Physiological Reports, 2021, 9, e14885.	1.7	18
14	Exercise as a Potential Intervention to Modulate Cancer Outcomes in Children and Adults?. Frontiers in Oncology, 2020, 10, 196.	2.8	5
15	Metabolite Concentration Changes in Humans After a Bout of Exercise: a Systematic Review of Exercise Metabolomics Studies. Sports Medicine - Open, 2020, 6, 11.	3.1	127
16	PKM2 Determines Myofiber Hypertrophy In Vitro and Increases in Response to Resistance Exercise in Human Skeletal Muscle. International Journal of Molecular Sciences, 2020, 21, 7062.	4.1	21
17	Vgll3 operates via Tead1, Tead3 and Tead4 to influence myogenesis in skeletal muscle. Journal of Cell Science, 2019, 132, .	2.0	48
18	Genes Whose Gain or Loss-of-Function Increases Endurance Performance in Mice: A Systematic Literature Review. Frontiers in Physiology, 2019, 10, 262.	2.8	22

HENNING WACKERHAGE

#	Article	IF	CITATIONS
19	Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. Journal of Applied Physiology, 2019, 126, 30-43.	2.5	180
20	A genetic modifier suggests that endurance exercise exacerbates Huntington's disease. Human Molecular Genetics, 2018, 27, 1723-1731.	2.9	17
21	Analysis of the relationship between the KRAS G12V oncogene and the Hippo effector YAP1 in embryonal rhabdomyosarcoma. Scientific Reports, 2018, 8, 15674.	3.3	9
22	Genes Whose Gain or Loss-Of-Function Increases Skeletal Muscle Mass in Mice: A Systematic Literature Review. Frontiers in Physiology, 2018, 9, 553.	2.8	43
23	Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function. Stem Cells, 2017, 35, 1958-1972.	3.2	93
24	Age-related changes in the effects of strength training on lower leg muscles in healthy individuals measured using MRI. BMJ Open Sport and Exercise Medicine, 2017, 3, e000249.	2.9	4
25	The Hippo signal transduction network for exercise physiologists. Journal of Applied Physiology, 2016, 120, 1105-1117.	2.5	32
26	The Hippo effector <scp>TAZ</scp> (<i><scp>WWTR1</scp></i>) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcoma. Journal of Pathology, 2016, 240, 3-14.	4.5	40
27	Yes-associated protein (YAP) is a negative regulator of chondrogenesis in mesenchymal stem cells. Arthritis Research and Therapy, 2015, 17, 147.	3.5	104
28	A longitudinal study of muscle rehabilitation in the lower leg after cast removal using magnetic resonance imaging and strength assessment. International Biomechanics, 2015, 2, 101-112.	1.0	5
29	The Hippo signal transduction pathway in soft tissue sarcomas. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 121-129.	7.4	28
30	Programmed cell death 6 interacting protein (PDCD6IP) and Rabenosynâ€5 (ZFYVE20) are potential urinary biomarkers for upper gastrointestinal cancer. Proteomics - Clinical Applications, 2015, 9, 586-596.	1.6	13
31	High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflugers Archiv European Journal of Physiology, 2015, 467, 1343-1356.	2.8	59
32	Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis. Brain, 2014, 137, 3171-3185.	7.6	23
33	The Hippo signal transduction network in skeletal and cardiac muscle. Science Signaling, 2014, 7, re4.	3.6	74
34	The Hippo Transducer YAP1 Transforms Activated Satellite Cells and Is a Potent Effector of Embryonal Rhabdomyosarcoma Formation. Cancer Cell, 2014, 26, 273-287.	16.8	152
35	Constitutive Expression of Yes-Associated Protein (Yap) in Adult Skeletal Muscle Fibres Induces Muscle Atrophy and Myopathy. PLoS ONE, 2013, 8, e59622.	2.5	61
36	Increased Skeletal Muscle 11βHSD1 mRNA Is Associated with Lower Muscle Strength in Ageing. PLoS ONE, 2013, 8, e84057.	2.5	24

HENNING WACKERHAGE

#	Article	IF	CITATIONS
37	The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. Journal of Cell Science, 2012, 125, 6009-6019.	2.0	151
38	Yap is a novel regulator of C2C12 myogenesis. Biochemical and Biophysical Research Communications, 2010, 393, 619-624.	2.1	128
39	Genetic research and testing in sport and exercise science: A review of the issues. Journal of Sports Sciences, 2009, 27, 1109-1116.	2.0	18
40	Signal transduction pathways that regulate muscle growth. Essays in Biochemistry, 2008, 44, 99-108.	4.7	26
41	How nutrition and exercise maintain the human musculoskeletal mass. Journal of Anatomy, 2006, 208, 451-458.	1.5	37
42	Selective activation of AMPKâ€PGCâ€1α or PKBâ€TSC2â€mTOR signaling can explain specific adaptive responses endurance or resistance trainingâ€like electrical muscle stimulation. FASEB Journal, 2005, 19, 1-23.	to 0.5	391
43	Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB Journal, 2005, 19, 1-22.	0.5	968
44	Control of the Size of the Human Muscle Mass. Annual Review of Physiology, 2004, 66, 799-828.	13.1	359
45	Inside the â€ ⁻ black box'. , 2004, , 11-12.		0
46	Recovering from Eccentric Exercise: Get Weak to Become Strong. Journal of Physiology, 2003, 553, 681-681.	2.9	3