Antimo Migliaccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4405283/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Insights and Emerging Therapeutic Approaches in Prostate Cancer. Frontiers in Endocrinology, 2022, 13, 840787.	1.5	6
2	A Small Peptide Targeting the Ligand-Induced Androgen Receptor/Filamin a Interaction Inhibits the Invasive Phenotype of Prostate Cancer Cells. Cells, 2022, 11, 14.	1.8	8
3	New TRPM8 blockers exert anticancer activity over castration-resistant prostate cancer models. European Journal of Medicinal Chemistry, 2022, 238, 114435.	2.6	8
4	An Innovative High Frequency Hyperthermia Approach against SARS-Cov-2 and Related Virus: Feasibility Analysis. Archives of Clinical and Biomedical Research, 2021, 05, .	0.1	0
5	Targeting the Nerve Growth Factor Signaling Impairs the Proliferative and Migratory Phenotype of Triple-Negative Breast Cancer Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 676568.	1.8	20
6	Exploiting the mechanism of estrogen-induced transcription to fight breast cancer. Experimental and Molecular Medicine, 2021, 53, 1205-1206.	3.2	1
7	ERÎ ² in Triple-Negative Breast Cancer: Emerging Concepts and Therapeutic Possibilities. Endocrines, 2021, 2, 356-365.	0.4	7
8	The androgen receptor/filamin A complex as a target in prostate cancer microenvironment. Cell Death and Disease, 2021, 12, 127.	2.7	42
9	Communication between cells: exosomes as a delivery system in prostate cancer. Cell Communication and Signaling, 2021, 19, 110.	2.7	16
10	Therapeutic potential of TRPM8 antagonists in prostate cancer. Scientific Reports, 2021, 11, 23232.	1.6	22
11	Acetylation/methylation at lysine 9 in histone H3 as a mark of nucleosome asymmetry in human somatic breast cells. Cell Death Discovery, 2020, 6, 39.	2.0	3
12	LSD1: more than demethylation of histone lysine residues. Experimental and Molecular Medicine, 2020, 52, 1936-1947.	3.2	81
13	ROS in cancer therapy: the bright side of the moon. Experimental and Molecular Medicine, 2020, 52, 192-203.	3.2	1,260
14	Estrogen Receptors in Epithelial-Mesenchymal Transition of Prostate Cancer. Cancers, 2019, 11, 1418.	1.7	45
15	Nerve Growth Factor Induces Proliferation and Aggressiveness in Prostate Cancer Cells. Cancers, 2019, 11, 784.	1.7	47
16	BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Cell Death and Disease, 2019, 10, 338.	2.7	31
17	Estrogens Modulate Somatostatin Receptors Expression and Synergize With the Somatostatin Analog Pasireotide in Prostate Cells. Frontiers in Pharmacology, 2019, 10, 28.	1.6	28
18	Androgens Induce Invasiveness of Triple Negative Breast Cancer Cells Through AR/Src/PI3-K Complex Assembly. Scientific Reports, 2019, 9, 4490.	1.6	79

ΑΝΤΙΜΟ ΜΙGLIACCIO

#	Article	IF	CITATIONS
19	Breast cancer stem cells: the role of sex steroid receptors. World Journal of Stem Cells, 2019, 11, 594-603.	1.3	29
20	The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. Oncogene, 2018, 37, 2559-2572.	2.6	32
21	Cross-talk between androgen receptor and nerve growth factor receptor in prostate cancer cells: implications for a new therapeutic approach. Cell Death Discovery, 2018, 4, 5.	2.0	37
22	The Androgen Receptor in Breast Cancer. Frontiers in Endocrinology, 2018, 9, 492.	1.5	154
23	Phosphorylation of Estradiol Receptor on Tyrosine. , 2018, , 333-355.		Ο
24	Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Molecular and Cellular Endocrinology, 2017, 457, 35-42.	1.6	96
25	Extranuclear partners of androgen receptor: at the crossroads of proliferation, migration, and neuritogenesis. FASEB Journal, 2017, 31, 1289-1300.	0.2	40
26	Inhibition of p110δPI3K prevents inflammatory response and restenosis after artery injury. Bioscience Reports, 2017, 37, .	1.1	24
27	Bisphenol A induces cell cycle arrest in primary and prostate cancer cells through EGFR/ERK/p53 signaling pathway activation. Oncotarget, 2017, 8, 115620-115631.	0.8	52
28	Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells. PLoS ONE, 2016, 11, e0151455.	1.1	37
29	Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget, 2016, 7, 193-208.	0.8	91
30	Role of JMJD6 in Breast Tumourigenesis. PLoS ONE, 2015, 10, e0126181.	1.1	48
31	Cross-talk between androgen receptor/filamin A and TrkA regulates neurite outgrowth in PC12 cells. Molecular Biology of the Cell, 2015, 26, 2858-2872.	0.9	37
32	Diversin Is Overexpressed in Breast Cancer and Accelerates Cell Proliferation and Invasion. PLoS ONE, 2014, 9, e98591.	1.1	7
33	Dissection of Estrogen Receptor Alpha Signaling Pathways in Osteoblasts Using RNA-Sequencing. PLoS ONE, 2014, 9, e95987.	1.1	22
34	The Deficiency of Tumor Suppressor Prep1 Accelerates the Onset of Meis1- Hoxa9 Leukemogenesis. PLoS ONE, 2014, 9, e96711.	1.1	8
35	A Firmer Understanding of the Effect of Hypergravity on Thyroid Tissue: Cholesterol and Thyrotropin Receptor. PLoS ONE, 2014, 9, e98250.	1.1	12
36	Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway. PLoS ONE, 2014, 9, e104732.	1.1	31

#	Article	IF	CITATIONS
37	Expression of Autophagy-Related Proteins According to Androgen Receptor and HER-2 Status in Estrogen Receptor-Negative Breast Cancer. PLoS ONE, 2014, 9, e105666.	1.1	11
38	Nuclear receptor-induced transcription is driven by spatially and timely restricted waves of ROS. Nucleus, 2014, 5, 482-491.	0.6	20
39	Role of non-genomic androgen signalling in suppressing proliferation of fibroblasts and fibrosarcoma cells. Cell Death and Disease, 2014, 5, e1548-e1548.	2.7	45
40	Phosphorylation of H3 serine 10 by IKK $\hat{l}\pm$ governs cyclical production of ROS in estrogen-induced transcription and ensures DNA wholeness. Cell Death and Differentiation, 2014, 21, 1503-1503.	5.0	16
41	Metformin Inhibits Androgen-Induced IGF-IR Up-Regulation in Prostate Cancer Cells by Disrupting Membrane-Initiated Androgen Signaling. Endocrinology, 2014, 155, 1207-1221.	1.4	50
42	Protein-Tyrosine Phosphatase H1 Increases Breast Cancer Sensitivity to Antiestrogens by Dephosphorylating Estrogen Receptor at Tyr537. Molecular Cancer Therapeutics, 2014, 13, 230-238.	1.9	36
43	Epigenetic drugs against cancer: an evolving landscape. Archives of Toxicology, 2014, 88, 1651-1668.	1.9	50
44	Non-Genomic Androgen Action Regulates Proliferative/Migratory Signaling in Stromal Cells. Frontiers in Endocrinology, 2014, 5, 225.	1.5	30
45	Phosphoinositide 3-Kinase Assay in Breast Cancer Cell Extracts. Methods in Molecular Biology, 2014, 1204, 145-153.	0.4	16
46	Analysis of Histone Posttranslational Modifications in the Control of Chromatin Plasticity Observed at Estrogen-Responsive Sites in Human Breast Cancer Cells. Methods in Molecular Biology, 2014, 1204, 59-69.	0.4	1
47	Abstract 2108: Estrogen non genomic signalling is activated in tamoxifen-resistant breast cancer. , 2014, , .		0
48	Retinoic acid impairs estrogen signaling in breast cancer cells by interfering with activation of LSD1 via PKA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 480-486.	0.9	22
49	Resveratrol Couples Apoptosis with Autophagy in UVB-Irradiated HaCaT Cells. PLoS ONE, 2013, 8, e80728.	1.1	56
50	Acetylcholine Acts on Androgen Receptor to Promote the Migration and Invasion but Inhibit the Apoptosis of Human Hepatocarcinoma. PLoS ONE, 2013, 8, e61678.	1.1	29
51	Differentially Expressed Androgen-Regulated Genes in Androgen-Sensitive Tissues Reveal Potential Biomarkers of Early Prostate Cancer. PLoS ONE, 2013, 8, e66278.	1.1	30
52	Estradiol and Tamoxifen Induce Cell Migration through GPR30 and Activation of Focal Adhesion Kinase (FAK) in Endometrial Cancers with Low or without Nuclear Estrogen Receptor α (ERα). PLoS ONE, 2013, 8, e72999.	1.1	51
53	Targeting Androgen Receptor/Src Complex Impairs the Aggressive Phenotype of Human Fibrosarcoma Cells. PLoS ONE, 2013, 8, e76899.	1.1	21
54	RTK/ERK Pathway under Natural Selection Associated with Prostate Cancer. PLoS ONE, 2013, 8, e78254.	1.1	13

#	Article	IF	CITATIONS
55	Nuclear Ras2-GTP Controls Invasive Growth in Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e79274.	1.1	6
56	Does Changing Androgen Receptor Status during Prostate Cancer Development Impact upon Cholesterol Homeostasis?. PLoS ONE, 2013, 8, e54007.	1.1	22
57	Estradiol Receptor (ER) Chromatin Immunoprecipitation in MCF-7 Cells. Bio-protocol, 2013, 3, .	0.2	Ο
58	Targeting rapid action of sex-steroid receptors in breast and prostate cancers. Frontiers in Bioscience - Elite, 2012, E4, 453.	0.9	14
59	Polyproline and Tat transduction peptides in the study of the rapid actions of steroid receptors. Steroids, 2012, 77, 974-978.	0.8	15
60	Tyrosine phosphorylation of estradiol receptor by Src regulates its hormone-dependent nuclear export and cell cycle progression in breast cancer cells. Oncogene, 2012, 31, 4868-4877.	2.6	61
61	Nuclear Factor-Kappa B Inhibition Can Enhance Apoptosis of Differentiated Thyroid Cancer Cells Induced by 1311. PLoS ONE, 2012, 7, e33597.	1.1	35
62	Neuregulin Promotes Incomplete Autophagy of Prostate Cancer Cells That Is Independent of mTOR Pathway Inhibition. PLoS ONE, 2012, 7, e36828.	1.1	18
63	A Switch Role of Src in the Biphasic ECF Signaling of ER-Negative Breast Cancer Cells. PLoS ONE, 2012, 7, e41613.	1.1	16
64	Non-genomic Action of Steroid Hormones: More Questions than Answers. , 2012, , 1-15.		2
65	ALK-Activating Homologous Mutations in LTK Induce Cellular Transformation. PLoS ONE, 2012, 7, e31733.	1.1	32
66	The DEK Oncogene Is a Target of Steroid Hormone Receptor Signaling in Breast Cancer. PLoS ONE, 2012, 7, e46985.	1.1	34
67	VAL 201 $\hat{a} \in$ "An Inhibitor of Androgen Receptor-associated Src and a Potential Treatment of Castration-resistant Prostate Cancer. European Oncology and Haematology, 2012, 08, 32.	0.0	Ο
68	Analysis of Androgen Receptor Rapid Actions in Cellular Signaling Pathways: Receptor/Src Association. Methods in Molecular Biology, 2011, 776, 361-370.	0.4	30
69	Targeting rapid action of sex steroid receptors in breast and prostate cancers. Frontiers in Bioscience - Landmark, 2011, 16, 2224.	3.0	29
70	Androgen-Induced Cell Migration: Role of Androgen Receptor/Filamin A Association. PLoS ONE, 2011, 6, e17218.	1.1	89
71	Steroid signaling activation and intracellular localization of sex steroid receptors. Journal of Cell Communication and Signaling, 2010, 4, 161-172.	1.8	20

Non-Genomic Action of Sex Steroid Hormones. , 2010, , 365-379.

#	Article	IF	CITATIONS
73	Cross talk between epidermal growth factor (EGF) receptor and extra nuclear steroid receptors in cell lines. Molecular and Cellular Endocrinology, 2010, 327, 19-24.	1.6	30
74	Cell proliferation regulated by estradiol receptor: Therapeutic implications. Steroids, 2010, 75, 524-527.	0.8	28
75	Signaling-dependent nuclear export of estradiol receptor controls cell cycle progression in breast cancer cells. Molecular and Cellular Endocrinology, 2009, 308, 26-31.	1.6	13
76	Sex-steroid hormones and ECF signalling in breast and prostate cancer cells: Targeting the association of Src with steroid receptors. Steroids, 2008, 73, 880-884.	0.8	41
77	Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells. Journal of Cell Biology, 2008, 182, 327-340.	2.3	74
78	Integrating signals between cAMP and MAPK pathways in breast cancer. Frontiers in Bioscience - Landmark, 2008, 13, 1318.	3.0	44
79	Inhibition of Estradiol Receptor/Src Association and Cell Growth by an Estradiol Receptor α Tyrosine-Phosphorylated Peptide. Molecular Cancer Research, 2007, 5, 1213-1221.	1.5	86
80	Src-dependent signalling pathway regulation by sex-steroid hormones: Therapeutic implications. International Journal of Biochemistry and Cell Biology, 2007, 39, 1343-1348.	1.2	38
81	p85 regulatory subunit of PI3K mediates cAMP–PKA and estrogens biological effects on growth and survival. Oncogene, 2007, 26, 2095-2103.	2.6	64
82	Inhibition of the SH3 domain-mediated binding of Src to the androgen receptor and its effect on tumor growth. Oncogene, 2007, 26, 6619-6629.	2.6	94
83	Crosstalk between EGFR and Extranuclear Steroid Receptors. Annals of the New York Academy of Sciences, 2006, 1089, 194-200.	1.8	76
84	The Progesterone Receptor/Estradiol Receptor Association and the Progestin-Triggered S-Phase Entry. , 2005, , 39-54.		7
85	Steroid Receptor Regulation of Epidermal Growth Factor Signaling through Src in Breast and Prostate Cancer Cells: Steroid Antagonist Action. Cancer Research, 2005, 65, 10585-10593.	0.4	170
86	Role of Atypical Protein Kinase C in Estradiol-Triggered G 1 /S Progression of MCF-7 Cells. Molecular and Cellular Biology, 2004, 24, 7643-7653.	1.1	63
87	Rapid signalling pathway activation by androgens in epithelial and stromal cells. Steroids, 2004, 69, 517-522.	0.8	66
88	Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. Journal of Cell Biology, 2003, 161, 547-556.	2.3	128
89	Two Domains of the Progesterone Receptor Interact with the Estrogen Receptor and Are Required for Progesterone Activation of the c-Src/Erk Pathway in Mammalian Cells. Molecular and Cellular Biology, 2003, 23, 1994-2008.	1.1	200

90 Interactions of Estrogen Receptors with Signal Cascade Molecules. , 2003, , 77-83.

1

#	Article	IF	CITATIONS
91	Sex steroid hormones act as growth factors. Journal of Steroid Biochemistry and Molecular Biology, 2002, 83, 31-35.	1.2	96
92	<i>Src</i> Is an Initial Target of Sex Steroid Hormone Action. Annals of the New York Academy of Sciences, 2002, 963, 185-190.	1.8	59
93	PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO Journal, 2001, 20, 6050-6059.	3.5	413
94	cAMP signaling selectively influences Ras effectors pathways. Oncogene, 2001, 20, 1186-1192.	2.6	93
95	Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO Journal, 2000, 19, 5406-5417.	3.5	606
96	Non-transcriptional action of oestradiol and progestin triggers DNA synthesis. EMBO Journal, 1999, 18, 2500-2510.	3.5	245
97	Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO Journal, 1998, 17, 2008-2018.	3.5	556
98	Protein Tyrosine Phosphorylation and Estradiol Action. Annals of the New York Academy of Sciences, 1996, 784, 149-172.	1.8	24
99	Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells EMBO Journal, 1996, 15, 1292-1300.	3.5	845
100	A 67 kDa non-hormone binding estradiol receptor is present in human mammary cancers. , 1996, 65, 574-583.		11
101	Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO Journal, 1996, 15, 1292-300.	3.5	247
102	Estradiol activation of human colon carcinoma-derived Caco-2 cell growth. Cancer Research, 1996, 56, 4516-21.	0.4	131
103	The role of estradiol receptor in the proliferative activity of vanadate on MCF-7 cells. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 1995, 6, 105-13.	0.8	11
104	Epidermal growth factor induces protein tyrosine phosphorylation and association of p190 with ras-GTP-ase activating protein in Caco-2 cells. FEBS Letters, 1994, 353, 16-20.	1.3	12
105	Properties of a purified estradiol-dependent calf uterus tyrosine kinase. Biochemistry, 1993, 32, 1740-1750.	1.2	86
106	Immediate and transient stimulation of protein tyrosine phosphorylation by estradiol in MCF-7 cells. Oncogene, 1993, 8, 2183-91.	2.6	90
107	Phosphorylation and estradiol binding of estrogen receptor in hormone-dependent and hormone-independent GR mouse mammary tumors. International Journal of Cancer, 1992, 51, 733-739.	2.3	19
108	In vitro phosphorylation and hormone binding activation of the synthetic wild type human estradiol receptor. Journal of Steroid Biochemistry and Molecular Biology, 1991, 38, 407-413.	1.2	37

#	Article	IF	CITATIONS
109	Serine phosphorylation of biosynthetic pro-urokinase from human tumor cells. FEBS Letters, 1990, 266, 109-114.	1.3	14
110	Mechanism of Action of Estrogens: Phosphorylation of Estradiol Receptor on Tyrosine. , 1990, , 257-267.		0
111	Phosphorylation of uterus estradiol receptor on tyrosine. Progress in Clinical and Biological Research, 1990, 322, 133-55.	0.2	4
112	Phosphorylation on Tyrosine of <i>in Vitro</i> Synthesized Human Estrogen Receptor Activates Its Hormone Binding. Molecular Endocrinology, 1989, 3, 1061-1069.	3.7	121
113	In VitroInteraction of Estradiol Receptor with Ca2+-Calmodulin. Molecular Endocrinology, 1988, 2, 167-174.	3.7	53
114	Advances in Uterus Estradiol Receptor Phosphorylation on Tyrosine and Preliminary Evidences That Liver Glucocorticoid Receptor Might Be Phosphorylated on Tyrosine. , 1988, , 133-148.		0
115	Phosphorylation of Estradiol Receptor on Tyrosine and Interaction of Estradiol and Glucocorticoid Receptors with Antiphosphotyrosine Antibodies. , 1988, 231, 519-540.		5
116	[54] Calmodulin-stimulated estradiol receptor-tyrosine kinase I. Methods in Enzymology, 1987, 139, 731-744.	0.4	14
117	Phosphorylation on tyrosine of oestradiol-17l ² receptor in uterus and interaction of oestradiol-17l ² and glucocorticoid receptors with antiphosphotyrosine antibodies. The Journal of Steroid Biochemistry, 1987, 27, 245-253.	1.3	16
118	Oestradiol stimulates tyrosine phosphorylation and hormone binding activity of its own receptor in a cell-free system EMBO Journal, 1987, 6, 2923-2929.	3.5	59
119	Oestradiol stimulates tyrosine phosphorylation and hormone binding activity of its own receptor in a cell-free system. EMBO Journal, 1987, 6, 2923-9.	3.5	5
120	Activation-inactivation of hormone binding sites of the oestradiol-17β receptor is a multiregulated process. The Journal of Steroid Biochemistry, 1986, 24, 39-43.	1.3	23
121	Hormone regulation of 17β-estradiol receptor phosphorylation on tyrosine. Cell Biology International Reports, 1986, 10, 150-150.	0.7	Ο
122	Estradiol receptor: phosphorylation on tyrosine in uterus and interaction with anti-phosphotyrosine antibody EMBO Journal, 1986, 5, 2867-2872.	3.5	101
123	Estradiol receptor: phosphorylation on tyrosine in uterus and interaction with anti-phosphotyrosine antibody. EMBO Journal, 1986, 5, 2867-72.	3.5	18
124	PHOSPHORYLATION ON TYROSINE OF THE 173-ESTRADIOL RECEPTOR. , 1985, , 279-298.		2
125	Hypnosis for upper gastrointestinal endoscopy. Gastrointestinal Endoscopy, 1985, 31, 228.	0.5	10
126	Direct evidence of in vitro phosphorylation-dephosphorylation of the estradiol-17β receptor. role of Ca2+-Calmodulin in the activation of hormone binding sites. The Journal of Steroid Biochemistry, 1984, 20, 31-35.	1.3	65

#	Article	IF	CITATIONS
127	Calmodulin-stimulated phosphorylation of 17 beta-estradiol receptor on tyrosine Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5921-5925.	3.3	128
128	Phosphorylation-Dephosphorylation of the Estradiol Receptor Regulates its Hormone Binding Activity. , 1984, , 177-196.		0
129	Phosphorylation of calf uterus 17β-estradiol receptor by endogenous Ca2+-stimulated kinase activating the hormone binding of the receptor. Biochemical and Biophysical Research Communications, 1982, 109, 1002-1010.	1.0	98
130	Evidence that invivo estradiol receptor translocated into nuclei is dephosphorylated and released into cytoplasm. Biochemical and Biophysical Research Communications, 1982, 106, 149-157.	1.0	53
131	Hormone binding of estradiol-17β receptor: Evidence for its regulation by cytoplasmic phosphorylation and nuclear dephosphorylation. Prevention of dephosphorylation by antiestrogens. The Journal of Steroid Biochemistry, 1981, 15, 369-373.	1.3	25
132	ATP-dependent enzyme activating hormone binding of estradiol receptor. Biochemical and Biophysical Research Communications, 1981, 101, 1171-1178.	1.0	75
133	Inactivation of oestrogen receptor <i>in vitro</i> by nuclear dephosphorylation. Biochemical Journal, 1981, 194, 569-574.	3.2	90
134	Dephosphorylation of oestradiol nuclear receptor <i>in vitro</i> . A hypothesis on the mechanism of action of non-steroidal anti-oestrogens. Biochemical Journal, 1981, 198, 699-702.	1.7	38
135	In vitro inactivation of oestrogen receptor by nuclei. FEBS Letters, 1980, 117, 224-226.	1.3	28