
Kim Newton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4405203/publications.pdf Version: 2024-02-01

KIM NEWTON

#	Article	IF	CITATIONS
1	Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440, 228-232.	27.8	2,663
2	Non-canonical inflammasome activation targets caspase-11. Nature, 2011, 479, 117-121.	27.8	2,072
3	Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature, 2004, 430, 213-218.	27.8	1,627
4	Signaling in Innate Immunity and Inflammation. Cold Spring Harbor Perspectives in Biology, 2012, 4, a006049-a006049.	5.5	1,206
5	Activity of Protein Kinase RIPK3 Determines Whether Cells Die by Necroptosis or Apoptosis. Science, 2014, 343, 1357-1360.	12.6	545
6	Ubiquitin Chain Editing Revealed by Polyubiquitin Linkage-Specific Antibodies. Cell, 2008, 134, 668-678.	28.9	514
7	Kinase RIP3 Is Dispensable for Normal NF-κBs, Signaling by the B-Cell and T-Cell Receptors, Tumor Necrosis Factor Receptor 1, and Toll-Like Receptors 2 and 4. Molecular and Cellular Biology, 2004, 24, 1464-1469.	2.3	503
8	Loss of the Tumor Suppressor BAP1 Causes Myeloid Transformation. Science, 2012, 337, 1541-1546.	12.6	355
9	Cleavage of RIPK1 by caspase-8Âis crucial for limiting apoptosis and necroptosis. Nature, 2019, 574, 428-431.	27.8	310
10	Necroptosis and Inflammation. Annual Review of Biochemistry, 2016, 85, 743-763.	11.1	291
11	RIPK1 inhibits ZBP1-driven necroptosis during development. Nature, 2016, 540, 129-133.	27.8	285
12	RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends in Cell Biology, 2015, 25, 347-353.	7.9	249
13	Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature, 2015, 528, 370-375.	27.8	227
14	Activity of caspase-8 determines plasticity between cell death pathways. Nature, 2019, 575, 679-682.	27.8	215
15	OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature, 2018, 559, 120-124.	27.8	151
16	Mice Lacking the CARD of CARMA1 Exhibit Defective B Lymphocyte Development and Impaired Proliferation of Their B and T Lymphocytes. Current Biology, 2003, 13, 1247-1251.	3.9	143
17	COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature, 2011, 474, 403-406.	27.8	143
18	Dying cells fan the flames of inflammation. Science, 2021, 374, 1076-1080.	12.6	117

Kim Newton

#	Article	IF	CITATIONS
19	Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature, 2015, 518, 417-421.	27.8	110
20	RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases. Cell Death and Differentiation, 2020, 27, 161-175.	11.2	100
21	Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death and Differentiation, 2017, 24, 26-37.	11.2	95
22	Transcription factor Etv5 is essential for the maintenance of alveolar type II cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3903-3908.	7.1	94
23	Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host and Microbe, 2021, 29, 1521-1530.e10.	11.0	91
24	Ubiquitin Ligase COP1 Suppresses Neuroinflammation by Degrading c/EBPβ in Microglia. Cell, 2020, 182, 1156-1169.e12.	28.9	77
25	Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins. ELife, 2019, 8, .	6.0	73
26	Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science, 2019, 364, 283-285.	12.6	71
27	Myodegeneration in EDA-A2 Transgenic Mice Is Prevented by XEDAR Deficiency. Molecular and Cellular Biology, 2004, 24, 1608-1613.	2.3	70
28	Integration of innate immune signalling by caspase-8 cleavage of N4BP1. Nature, 2020, 587, 275-280.	27.8	67
29	Structural Insights into WD-Repeat 48 Activation of Ubiquitin-Specific Protease 46. Structure, 2015, 23, 2043-2054.	3.3	61
30	Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell, 2021, 184, 4480-4494.e15.	28.9	61
31	Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036368.	5.5	56
32	The RIPK4–IRF6 signalling axis safeguards epidermal differentiation and barrier function. Nature, 2019, 574, 249-253.	27.8	51
33	The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. PLoS ONE, 2019, 14, e0214110.	2.5	48
34	Ubiquitin Ligases cIAP1 and cIAP2 Limit Cell Death to Prevent Inflammation. Cell Reports, 2019, 27, 2679-2689.e3.	6.4	44
35	β-Cell Insulin Secretion Requires the Ubiquitin Ligase COP1. Cell, 2015, 163, 1457-1467.	28.9	43
36	Impaired RIPK1 ubiquitination sensitizes mice to TNF toxicity and inflammatory cell death. Cell Death and Differentiation, 2021, 28, 985-1000.	11.2	41

Kim Newton

#	Article	IF	CITATIONS
37	Kinase domain dimerization drives RIPK3-dependent necroptosis. Science Signaling, 2018, 11, .	3.6	29
38	CRISPR whole-genome screening identifies new necroptosis regulators and RIPK1 alternative splicing. Cell Death and Disease, 2018, 9, 261.	6.3	24
39	Using Linkage-Specific Monoclonal Antibodies to Analyze Cellular Ubiquitylation. Methods in Molecular Biology, 2012, 832, 185-196.	0.9	24
40	Ubiquitin ligase COP1 coordinates transcriptional programs that control cell type specification in the developing mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11244-11249.	7.1	22
41	Ubiquitin Ligases in Cancer: Ushers for Degradation. Cancer Investigation, 2007, 25, 502-513.	1.3	21
42	Detection of Necroptosis by Phospho-RIPK3 Immunohistochemical Labeling. Methods in Molecular Biology, 2018, 1857, 153-160.	0.9	16
43	Immunohistochemical Detection of FLAG-Tagged Endogenous Proteins in Knock-In Mice. Journal of Histochemistry and Cytochemistry, 2015, 63, 244-255.	2.5	10
44	Deubiquitinases in cell death and inflammation. Biochemical Journal, 2022, 479, 1103-1119.	3.7	7