
Joseph M Rutkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4405195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nature Medicine, 2011, 17, 55-63.	30.7	751
2	Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metabolism, 2016, 23, 770-784.	16.2	730
3	The cell biology of fat expansion. Journal of Cell Biology, 2015, 208, 501-512.	5.2	428
4	An Endothelial-to-Adipocyte Extracellular Vesicle Axis Governed by Metabolic State. Cell, 2018, 175, 695-708.e13.	28.9	277
5	A driving force for change: interstitial flow as a morphoregulator. Trends in Cell Biology, 2007, 17, 44-50.	7.9	248
6	Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvascular Research, 2006, 72, 161-171.	2.5	207
7	Transmural Flow Modulates Cell and Fluid Transport Functions of Lymphatic Endothelium. Circulation Research, 2010, 106, 920-931.	4.5	207
8	Mechanisms of obesity and related pathologies: The macro―and microcirculation of adipose tissue. FEBS Journal, 2009, 276, 5738-5746.	4.7	194
9	Adiponectin Promotes Functional Recovery after Podocyte Ablation. Journal of the American Society of Nephrology: JASN, 2013, 24, 268-282.	6.1	142
10	Hypercholesterolemic Mice Exhibit Lymphatic Vessel Dysfunction and Degeneration. American Journal of Pathology, 2009, 175, 1328-1337.	3.8	136
11	Characterization of lymphangiogenesis in a model of adult skin regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1402-H1410.	3.2	135
12	Cooperative and redundant roles of VEGFRâ€⊋ and VEGFRâ€3 signaling in adult lymphangiogenesis. FASEB Journal, 2007, 21, 1003-1012.	0.5	126
13	Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. Journal of Comparative Neurology, 2013, 521, 3741-3767.	1.6	115
14	Targeted Deletion of Adipocytes by Apoptosis Leads to Adipose Tissue Recruitment of Alternatively Activated M2 Macrophages. Endocrinology, 2011, 152, 3074-3081.	2.8	114
15	Impaired Humoral Immunity and Tolerance in <i>K14-VEGFR-3-Ig</i> Mice That Lack Dermal Lymphatic Drainage. Journal of Immunology, 2012, 189, 2181-2190.	0.8	111
16	The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia. Circulation, 2016, 134, 61-72.	1.6	89
17	Dermal Collagen and Lipid Deposition Correlate with Tissue Swelling and Hydraulic Conductivity in Murine Primary Lymphedema. American Journal of Pathology, 2010, 176, 1122-1129.	3.8	85
18	Regulation of lymphatic capillary regeneration by interstitial flow in skin. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2176-H2183.	3.2	80

Joseph M Rutkowski

#	Article	IF	CITATIONS
19	Enhancing Renal Lymphatic Expansion Prevents Hypertension in Mice. Circulation Research, 2018, 122, 1094-1101.	4.5	59
20	Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation's fire?. Experimental Biology and Medicine, 2017, 242, 884-895.	2.4	55
21	Normal Dendritic Cell Mobilization to Lymph Nodes under Conditions of Severe Lymphatic Hypoplasia. Journal of Immunology, 2013, 190, 4608-4620.	0.8	53
22	Proteinuria Increases Plasma Phosphate by Altering Its Tubular Handling. Journal of the American Society of Nephrology: JASN, 2015, 26, 1608-1618.	6.1	53
23	Vascular Endothelial Growth Factor–DÂ(VEGF-D) Overexpression and Lymphatic Expansion in Murine Adipose Tissue Improves Metabolism in Obesity. American Journal of Pathology, 2019, 189, 924-939.	3.8	53
24	VEGF-C promotes the development of lymphatics in bone and bone loss. ELife, 2018, 7, .	6.0	50
25	Adiponectin alters renal calcium and phosphate excretion through regulation of klotho expression. Kidney International, 2017, 91, 324-337.	5.2	45
26	Time course of histomorphological changes in adipose tissue upon acute lipoatrophy. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 723-731.	2.6	44
27	Elevated resistin levels induce central leptin resistance and increased atherosclerotic progression in mice. Diabetologia, 2014, 57, 1209-1218.	6.3	44
28	Lack of "immunological fitness―during fasting in metabolically challenged animals. Journal of Lipid Research, 2012, 53, 1254-1267.	4.2	37
29	Hyperplasia, de novo lymphangiogenesis, and lymphatic regression in mice with tissue-specific, inducible overexpression of murine VEGF-D. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H384-H394.	3.2	37
30	Renal inflammation and injury are associated with lymphangiogenesis in hypertension. American Journal of Physiology - Renal Physiology, 2017, 312, F861-F869.	2.7	35
31	Differential role of nicotinamide adenine dinucleotide deficiency in acute and chronic kidney disease. Nephrology Dialysis Transplantation, 2021, 36, 60-68.	0.7	35
32	Augmenting Renal Lymphatic Density Prevents Angiotensin II-Induced Hypertension in Male and Female Mice. American Journal of Hypertension, 2020, 33, 61-69.	2.0	27
33	Kidney-specific lymphangiogenesis increases sodium excretion and lowers blood pressure in mice. Journal of Hypertension, 2020, 38, 874-885.	0.5	25
34	Decreased Renal Gluconeogenesis Is a Hallmark of Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2022, 33, 810-827.	6.1	24
35	VEGFR-3 Neutralization Inhibits Ovarian Lymphangiogenesis, Follicle Maturation, and Murine Pregnancy. American Journal of Pathology, 2013, 183, 1596-1607.	3.8	22
36	Retrograde Lymph Flow Leads to Chylothorax in Transgenic Mice with Lymphatic Malformations. American Journal of Pathology, 2017, 187, 1984-1997.	3.8	22

Joseph M Rutkowski

#	Article	IF	CITATIONS
37	Immune cell trafficking, lymphatics and hypertension. British Journal of Pharmacology, 2019, 176, 1978-1988.	5.4	22
38	Klotho regulation by albuminuria is dependent on ATF3 and endoplasmic reticulum stress. FASEB Journal, 2020, 34, 2087-2104.	0.5	19
39	Differential transendothelial transport of adiponectin complexes. Cardiovascular Diabetology, 2014, 13, 47.	6.8	17
40	Na v 1.8 neurons are involved in limiting acute phase responses to dietary fat. Molecular Metabolism, 2017, 6, 1081-1091.	6.5	16
41	Current Mechanistic Understandings of Lymphedema and Lipedema: Tales of Fluid, Fat, and Fibrosis. International Journal of Molecular Sciences, 2022, 23, 6621.	4.1	16
42	Characterizing Lymphangiogenesis and Concurrent Inflammation in Adipose Tissue in Response to VEGF-D. Frontiers in Physiology, 2020, 11, 363.	2.8	11
43	Pathological Type-2 Immune Response, Enhanced Tumor Growth, and Glucose Intolerance in Retnlî ² (RELMÎ ²) Null Mice. American Journal of Pathology, 2016, 186, 2404-2416.	3.8	10
44	Isolation and Quantitation of Adiponectin Higher Order Complexes. Methods in Enzymology, 2014, 537, 243-259.	1.0	9
45	Timeâ€course of sodium transport along the nephron in nephrotic syndrome: The role of potassium. FASEB Journal, 2020, 34, 2408-2424.	0.5	7
46	Expanded renal lymphatics improve recovery following kidney injury. Physiological Reports, 2021, 9, e15094.	1.7	7
47	Emerging roles for lymphatics in acute kidney injury: Beneficial or maleficent?. Experimental Biology and Medicine, 2021, 246, 845-850.	2.4	6
48	Hypertension and reproductive dysfunction: a possible role of inflammation and inflammation-associated lymphangiogenesis in gonads. Clinical Science, 2020, 134, 3237-3257.	4.3	6
49	A Kidney-Targeted Nanoparticle to Augment Renal Lymphatic Density Decreases Blood Pressure in Hypertensive Mice. Pharmaceutics, 2022, 14, 84.	4.5	6
50	Chronic VEGFR-3 signaling preserves dendritic arborization and sensitization under stress. Brain, Behavior, and Immunity, 2021, 98, 219-233.	4.1	5
51	Reduced lymphatic function contributes to age-related disease. Aging, 2019, 11, 9969-9970.	3.1	5
52	Comparison of ozone-specific (OZAC) and oxygen radical (ORAC) antioxidant capacity assays for use with nasal lavage fluid. Toxicology in Vitro, 2011, 25, 1406-1413.	2.4	4
53	Dichotomous effects on lymphatic transport with loss of caveolae in mice. Acta Physiologica, 2021, 232, e13656.	3.8	4
54	Common Metabolites in Two Different Hypertensive Mouse Models: A Serum and Urine Metabolome Study. Biomolecules, 2021, 11, 1387.	4.0	4

JOSEPH M RUTKOWSKI

#	Article	IF	CITATIONS
55	Fixing lymphatics improves glucose metabolism. Nature Metabolism, 2021, 3, 1139-1141.	11.9	3
56	Development of an Assay for Ozone-Specific Antioxidant Capacity. Inhalation Toxicology, 2003, 15, 1369-1385.	1.6	2
57	Impact of High Fat Diet and Bolus Feeding on Chyle Accumulation in a Mouse Model of Generalized Lymphatic Anomaly. Lymphatic Research and Biology, 2021, , .	1.1	1
58	Impact of Dietary Fatty Acids on Chylous Effusion in a Mouse Model of Generalized Lymphatic Anomaly. FASEB Journal, 2021, 35, .	0.5	0
59	Active response of the lymphatic endothelium to acute inflammation vs. chronic lymphedema: in vivo and in vitro studies. FASEB Journal, 2007, 21, A848.	0.5	0
60	ACTIVE REGULATION OF LIPID TRANSPORT AND METABOLISM BY LYMPHATICS: COMPLIMENTARY IN VIVO AND IN VITRO STUDIES. FASEB Journal, 2009, 23, 813.2.	0.5	0
61	Preadipocyte differentiation in GelMA hydrogels for mechanical testing. FASEB Journal, 2018, 32, .	0.5	0
62	Evaluation of the Cardiometabolic Disorders after Spinal Cord Injury in Mice. Biology, 2022, 11, 495.	2.8	0