Takuma Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4404378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Epilepsy-Associated Mutation of Salt-Inducible Kinase 1 Increases the Susceptibility to Epileptic Seizures and Interferes with Adrenocorticotropic Hormone Therapy for Infantile Spasms in Mice. International Journal of Molecular Sciences, 2022, 23, 7927.	4.1	8
2	Npas4 regulates IQSEC3 expression in hippocampal somatostatin interneurons to mediate anxiety-like behavior. Cell Reports, 2021, 36, 109417.	6.4	10
3	Risperidone Mitigates Enhanced Excitatory Neuronal Function and Repetitive Behavior Caused by an ASD-Associated Mutation of SIK1. Frontiers in Molecular Neuroscience, 2021, 14, 706494.	2.9	11
4	Efferent and Afferent Connections of Neuropeptide Y Neurons in the Nucleus Accumbens of Mice. Frontiers in Neuroanatomy, 2021, 15, 741868.	1.7	3
5	IQSEC2 Deficiency Results in Abnormal Social Behaviors Relevant to Autism by Affecting Functions of Neural Circuits in the Medial Prefrontal Cortex. Cells, 2021, 10, 2724.	4.1	12
6	Inhibition of DNA ligase IV enhances the CRISPR/Cas9-mediated knock-in efficiency in mouse brain neurons. Biochemical and Biophysical Research Communications, 2020, 533, 449-457.	2.1	8
7	DNA repair protein RAD51 enhances the CRISPR/Cas9-mediated knock-in efficiency in brain neurons. Biochemical and Biophysical Research Communications, 2020, 524, 621-628.	2.1	27
8	Deficiency of calcium/calmodulin-dependent serine protein kinase disrupts the excitatory-inhibitory balance of synapses by down-regulating GluN2B. Molecular Psychiatry, 2019, 24, 1079-1092.	7.9	26
9	Higher primate-like direct corticomotoneuronal connections are transiently formed in a juvenile subprimate mammal. Scientific Reports, 2018, 8, 16536.	3.3	11
10	Length of myelin internodes of individual oligodendrocytes is controlled by microenvironment influenced by normal and inputâ€deprived axonal activities in sensory deprived mouse models. Glia, 2018, 66, 2514-2525.	4.9	15
11	Rabies virusâ€mediated oligodendrocyte labeling reveals a single oligodendrocyte myelinates axons from distinct brain regions. Glia, 2017, 65, 93-105.	4.9	30
12	IQ Motif and SEC7 Domain-containing Protein 3 (IQSEC3) Interacts with Gephyrin to Promote Inhibitory Synapse Formation. Journal of Biological Chemistry, 2016, 291, 10119-10130.	3.4	27
13	Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques. Scientific Reports, 2016, 6, 35861.	3.3	51
14	Rabies virus glycoprotein variants display different patterns in rabies monosynaptic tracing. Frontiers in Neuroanatomy, 2014, 7, 47.	1.7	26
15	New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits. Neuron, 2012, 74, 206.	8.1	0
16	New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits. Neuron, 2011, 71, 617-631.	8.1	296
17	Targeting Single Neuronal Networks for Gene Expression and Cell Labeling In Vivo. Neuron, 2010, 67, 562-574.	8.1	196
18	Expression of <i>FOXP2</i> in the developing monkey forebrain: Comparison with the expression of the genes <i>FOXP1</i> , <i>PBX3</i> , and <i>MEIS2</i> . Journal of Comparative Neurology, 2008, 509, 180-189.	1.6	73

TAKUMA MORI

#	Article	IF	CITATIONS
19	Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons. Neuron, 2007, 53, 639-647.	8.1	1,080
20	Heterogeneity of the developmental patterns of neurotrophin protein levels among neocortical areas of macaque monkeys. Experimental Brain Research, 2006, 171, 129-138.	1.5	7
21	Immunohistochemical Analysis of Monoaminergic Neurons in the Brain of the Common Marmoset, Callithrix jacchus. Acta Histochemica Et Cytochemica, 2005, 38, 353-366.	1.6	1
22	Developmental changes in concentrations and distributions of neurotrophins in the monkey cerebellar cortex. Journal of Chemical Neuroanatomy, 2005, 30, 212-220.	2.1	4
23	Differential expression patterns of TrkB ligands in the macaque monkey brain. NeuroReport, 2004, 15, 2507-2511.	1.2	20
24	Levels of serum brain-derived neurotrophic factor in primates. Primates, 2003, 44, 167-169.	1.1	12
25	Changes in NT-3 and TrkC in the primary visual cortex of developing macaques. NeuroReport, 2002, 13, 1689-1694.	1.2	6
26	Third group of neostriatofugal neurons: Neurokinin B-producing neurons that send axons predominantly to the substantia innominata. Journal of Comparative Neurology, 2000, 426, 279-296.	1.6	19