
Sylwia Jafra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4404066/publications.pdf Version: 2024-02-01

SVINNIA LAEDA

#	Article	IF	CITATIONS
1	Detection, identification and differentiation of <i>Pectobacterium</i> and <i>Dickeya</i> species causing potato blackleg and tuber soft rot: a review. Annals of Applied Biology, 2015, 166, 18-38.	2.5	166
2	The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS ONE, 2017, 12, e0174362.	2.5	155
3	Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules Acta Biochimica Polonica, 2009, 56, .	0.5	154
4	Ectopic Expression of Anthocyanin 5-O-Glucosyltransferase in Potato Tuber Causes Increased Resistance to Bacteria. Journal of Agricultural and Food Chemistry, 2005, 53, 272-281.	5.2	114
5	Detection and characterization of bacteria from the potato rhizosphere degradingN-acyl-homoserine lactone. Canadian Journal of Microbiology, 2006, 52, 1006-1015.	1.7	103
6	Inactivation of AHLs by <i>Ochrobactrum</i> sp. A44 depends on the activity of a novel class of AHL acylase. Environmental Microbiology Reports, 2011, 3, 59-68.	2.4	65
7	Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochimica Polonica, 2009, 56, 1-16.	0.5	54
8	Virulence of â€~ <i>Dickeya solani</i> ' and <i>Dickeya dianthicola</i> biovarâ€1 and â€7 strains on potato (<i>Solanum tuberosum</i>). Plant Pathology, 2013, 62, 597-610.	2.4	50
9	Colonization of Potato Rhizosphere by GFP-Tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 Shown on Large Sections of Roots Using Enrichment Sample Preparation and Confocal Laser Scanning Microscopy. Sensors, 2012, 12, 17608-17619.	3.8	48
10	Temperatureâ€responsive genetic loci in pectinolytic plant pathogenic <i>Dickeya solani</i> . Plant Pathology, 2017, 66, 584-594.	2.4	37
11	Ochrobactrum quorumnocens sp. nov., a quorum quenching bacterium from the potato rhizosphere, and comparative genome analysis with related type strains. PLoS ONE, 2019, 14, e0210874.	2.5	31
12	Oxygen Availability Influences Expression of Dickeya solani Genes Associated With Virulence in Potato (Solanum tuberosum L.) and Chicory (Cichorium intybus L.). Frontiers in Plant Science, 2018, 9, 374.	3.6	30
13	When Genome-Based Approach Meets the "Old but Good― Revealing Genes Involved in the Antibacterial Activity of Pseudomonas sp. P482 against Soft Rot Pathogens. Frontiers in Microbiology, 2016, 7, 782.	3.5	27
14	Potential of bulb-associated bacteria for biocontrol of hyacinth soft rot caused by <i>Dickeya zeae</i> . Journal of Applied Microbiology, 2009, 106, 268-277.	3.1	26
15	Compatible Mixture of Bacterial Antagonists Developed to Protect Potato Tubers from Soft Rot Caused by <i>Pectobacterium</i> spp. and <i>Dickeya</i> spp Plant Disease, 2019, 103, 1374-1382.	1.4	26
16	The Great Five—an artificial bacterial consortium with antagonistic activity towards Pectobacterium spp. and Dickeya spp.: formulation, shelf life, and the ability to prevent soft rot of potato in storage. Applied Microbiology and Biotechnology, 2020, 104, 4547-4561.	3.6	23
17	Fast screening method for detection of acyl-HSL-degrading soil isolates. Journal of Microbiological Methods, 2004, 57, 415-420.	1.6	21
18	Expression of Erwinia chrysanthemi Pectinase Genes pell, pelL, and pelZ During Infection of Potato Tubers. Molecular Plant-Microbe Interactions, 1999, 12, 845-851.	2.6	20

Sylwia Jafra

#	Article	IF	CITATIONS
19	Management of Diseases Caused by Pectobacterium and Dickeya Species. , 2021, , 175-214.		20
20	Pectobacterium carotovorum subsp. carotovorum Strains Show Diversity in Production of and Response to N-acyl Homoserine Lactones. Journal of Phytopathology, 2006, 154, 729-739.	1.0	18
21	The carbon source-dependent pattern of antimicrobial activity and gene expression in Pseudomonas donghuensis P482. Scientific Reports, 2021, 11, 10994.	3.3	14
22	Genome-Wide Identification of Dickeya solani Transcriptional Units Up-Regulated in Response to Plant Tissues From a Crop-Host Solanum tuberosum and a Weed-Host Solanum dulcamara. Frontiers in Plant Science, 2020, 11, 580330.	3.6	13
23	Genome Sequence of <i>Pseudomonas</i> sp. Strain P482, a Tomato Rhizosphere Isolate with Broad-Spectrum Antimicrobial Activity. Genome Announcements, 2014, 2, .	0.8	12
24	Selection of reference genes for measuring the expression of aiiO in Ochrobactrum quorumnocens A44 using RT-qPCR. Scientific Reports, 2019, 9, 13129.	3.3	11
25	The chemical structure of polysaccharides isolated from the Ochrobactrum rhizosphaerae PR17T. Carbohydrate Research, 2020, 497, 108136.	2.3	10
26	Pectobacterium parmentieri SCC 3193 Mutants with Altered Synthesis of Cell Surface Polysaccharides Are Resistant to N4-Like Lytic Bacteriophage ϕA38 (vB_Ppp_A38) but Express Decreased Virulence in Potato (Solanum tuberosum L.) Plants. International Journal of Molecular Sciences, 2021, 22, 7346.	4.1	7
27	Biological Control Based on Microbial Consortia– From Theory to Commercial Products. Progress in Biological Control, 2020, , 183-202.	0.5	7
28	High-Quality Complete Genome Resource of Tomato Rhizosphere Strain <i>Pseudomonas donghuensis</i> P482, aÂRepresentative of a Species with Biocontrol Activity Against Plant Pathogens. Molecular Plant-Microbe Interactions, 2021, 34, 1450-1454.	2.6	3
29	Genome Sequence of Bacillus subtilis MB73/2, a Soil Isolate Inhibiting the Growth of Plant Pathogens <i>Dickeya</i> spp. and Rhizoctonia solani. Genome Announcements, 2013, 1, .	0.8	2
30	Biosensors Used for Epifluorescence and Confocal Laser Scanning Microscopies to Study Dickeya and Pectobacterium Virulence and Biocontrol. Microorganisms, 2021, 9, 295.	3.6	2
31	High-Quality Complete Genome Resource of Plant-Pathogenic Bacterium <i>Dickeya solani</i> IPO 2019, Isolated from <i>Hyacinthus orientalis</i> . Molecular Plant-Microbe Interactions, 2021, 34, 1088-1092.	2.6	1
32	Complete Genome Sequences of Five Gram-Negative Bacterial Strains Comprising Synthetic Bacterial Consortium "The Great Five―with Antagonistic Activity Against Plant-Pathogenic <i>Pectobacterium</i> spp. and <i>Dickeya</i> spp Molecular Plant-Microbe Interactions, 0, , .	2.6	1