Jessica R Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4404065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Predictive Coding Framework for Understanding Major Depression. Frontiers in Human Neuroscience, 2022, 16, 787495.	2.0	7
2	Magnetoencephalography biomarkers of suicide attempt history and antidepressant response to ketamine in treatment-resistant major depression. Journal of Affective Disorders, 2022, 312, 188-197.	4.1	3
3	Ketamine Alters Electrophysiological Responses to Emotional Faces in Major Depressive Disorder. Journal of Affective Disorders, 2021, 279, 239-249.	4.1	7
4	Ketamine and Serotonergic Psychedelics: Common Mechanisms Underlying the Effects of Rapid-Acting Antidepressants. International Journal of Neuropsychopharmacology, 2021, 24, 8-21.	2.1	58
5	Biologically plausible models of neural dynamics for rapid-acting antidepressant interventions. Neuropsychopharmacology, 2021, 46, 231-232.	5.4	Ο
6	New Methods for Assessing Rapid Changes in Suicide Risk. Frontiers in Psychiatry, 2021, 12, 598434.	2.6	31
7	Fine-tuning neural excitation/inhibition for tailored ketamine use in treatment-resistant depression. Translational Psychiatry, 2021, 11, 335.	4.8	6
8	Ketamine and Attentional Bias Toward Emotional Faces: Dynamic Causal Modeling of Magnetoencephalographic Connectivity in Treatment-Resistant Depression. Frontiers in Psychiatry, 2021, 12, 673159.	2.6	9
9	The Right Hemisphere Is Responsible for the Greatest Differences in Human Brain Response to High-Arousing Emotional versus Neutral Stimuli: A MEG Study. Brain Sciences, 2021, 11, 960.	2.3	3
10	Magnetoencephalographic Correlates of Suicidal Ideation in Major Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 354-363.	1.5	12
11	Using Mnemonic Similarity Task to Assess Medial Temporal Lobe Function: A Magnetoencephalography Study. Biological Psychiatry, 2020, 87, S237-S238.	1.3	0
12	Electrophysiological Correlates of the Monetary Incentive Delay Task in Mood Disorders. Biological Psychiatry, 2020, 87, S282.	1.3	0
13	Electrophysiological Correlates of the Suicide Implicit Association Task. Biological Psychiatry, 2020, 87, S169.	1.3	Ο
14	Multilayer MEG functional connectivity as a potential marker for suicidal thoughts in major depressive disorder. NeuroImage: Clinical, 2020, 28, 102378.	2.7	15
15	Network Changes in Insula and Amygdala Connectivity Accompany Implicit Suicidal Associations. Frontiers in Psychiatry, 2020, 11, 577628.	2.6	10
16	The Effect of Ketamine on Electrophysiological Connectivity in Major Depressive Disorder. Frontiers in Psychiatry, 2020, 11, 519.	2.6	15
17	Electrophysiological biomarkers of antidepressant response to ketamine in treatment-resistant depression: Gamma power and long-term potentiation. Pharmacology Biochemistry and Behavior, 2020, 189, 172856.	2.9	43
18	Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology, 2020, 45, 1398-1404.	5.4	47

JESSICA R GILBERT

#	Article	IF	CITATIONS
19	Mood Induction Paradigm in a Depressed Patient Sample Using Magnetoencephalography. Biological Psychiatry, 2020, 87, S416.	1.3	0
20	Lateralized memory circuit dropout in Alzheimer's disease patients. Brain Communications, 2020, 2, fcaa212.	3.3	6
21	F118. Ketamine and Attentional Bias to Threat: Dynamic Causal Modeling of AMPA and NMDA Connectivity Estimates From Magnetoencephalography. Biological Psychiatry, 2019, 85, S259.	1.3	Ο
22	F125. Magnetoencephalography of the Suicide Implicit Association Task. Biological Psychiatry, 2019, 85, S261-S262.	1.3	0
23	Synaptic potentiation and rapid antidepressant response to ketamine in treatment-resistant major depression: A replication study. Psychiatry Research - Neuroimaging, 2019, 283, 64-66.	1.8	34
24	T139. Ketamine and Attentional Bias to Threat: MEG Correlates of Stimulus-Evoked Gamma-Band Response. Biological Psychiatry, 2018, 83, S182.	1.3	0
25	F147. Resting State Oscillatory Power and Risk of Suicide in Depressed Patients. Biological Psychiatry, 2018, 83, S295.	1.3	Ο
26	Glutamatergic Signaling Drives Ketamine-Mediated Response in Depression: Evidence from Dynamic Causal Modeling. International Journal of Neuropsychopharmacology, 2018, 21, 740-747.	2.1	48
27	Inputs to prefrontal cortex support visual recognition in the aging brain. Scientific Reports, 2016, 6, 31943.	3.3	22
28	Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations. Neurolmage, 2016, 124, 43-53.	4.2	33
29	Assessing crossmodal matching of abstract auditory and visual stimuli in posterior superior temporal sulcus with MEG. Brain and Cognition, 2013, 82, 161-170.	1.8	1
30	Early sensory cortex is activated in the absence of explicit input during crossmodal item retrieval: Evidence from MEG. Behavioural Brain Research, 2013, 238, 265-272.	2.2	7
31	A Peak-Clustering Method for MEG Group Analysis to Minimise Artefacts Due to Smoothness. PLoS ONE, 2012, 7, e45084.	2.5	4
32	Object repetition leads to local increases in the temporal coordination of neural responses. Frontiers in Human Neuroscience, 2010, 4, 30.	2.0	43