
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4403994/publications.pdf Version: 2024-02-01

Ι ΛΙΙΦΑ ΜΑΠΟΙ

#	Article	IF	CITATIONS
1	Gangliosides as components of lipid membrane domains. Glycobiology, 2007, 17, 1R-13R.	2.5	296
2	Dynamic and Structural Properties of Sphingolipids as Driving Forces for the Formation of Membrane Domains. Chemical Reviews, 2006, 106, 2111-2125.	47.7	167
3	The oxysterol–CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. Journal of Experimental Medicine, 2013, 210, 1711-1728.	8.5	167
4	<i>N</i> -Glycolyl GM1 Ganglioside as a Receptor for Simian Virus 40. Journal of Virology, 2007, 81, 12846-12858.	3.4	150
5	GM1 Ganglioside: Past Studies and Future Potential. Molecular Neurobiology, 2016, 53, 1824-1842.	4.0	112
6	Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconjugate Journal, 2008, 25, 357-374.	2.7	101
7	GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 868.	4.1	91
8	Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. Journal of Lipid Research, 2020, 61, 636-654.	4.2	88
9	T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP. Cell Reports, 2017, 18, 2566-2575.	6.4	87
10	Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. Journal of Leukocyte Biology, 2008, 83, 728-741.	3.3	83
11	A Synthetic Divalent Cholera Toxin Glycocalix[4]arene Ligand Having Higher Affinity than Natural GM1 Oligosaccharide. Journal of the American Chemical Society, 2005, 127, 3660-3661.	13.7	79
12	Lipid Rafts in Neurodegeneration and Neuroprotection. Molecular Neurobiology, 2014, 50, 130-148.	4.0	74
13	Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Frontiers in Pharmacology, 2019, 10, 807.	3.5	72
14	Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Science Signaling, 2016, 9, ra101.	3.6	58
15	Ceramide and sphingomyelin species of fibroblasts and neurons in culture. Journal of Lipid Research, 2007, 48, 417-424.	4.2	57
16	Gangliosides in Membrane Organization. Progress in Molecular Biology and Translational Science, 2018, 156, 83-120.	1.7	48
17	Association of Src-family protein tyrosine kinases with sphingolipids in rat cerebellar granule cells differentiated in culture. Glycoconjugate Journal, 2000, 17, 223-232.	2.7	46
18	Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. Journal of Lipid Research, 2015, 56, 129-141.	4.2	46

#	Article	IF	CITATIONS
19	Sphingolipids and neuronal degeneration in lysosomal storage disorders. Journal of Neurochemistry, 2019, 148, 600-611.	3.9	37
20	Parkinson's disease recovery by GM1 oligosaccharide treatment in the B4galnt1+/â^' mouse model. Scientific Reports, 2019, 9, 19330.	3.3	34
21	Gangliosides as regulators of cell signaling: gangliosideâ€protein interactions or gangliosideâ€driven membrane organization?. Journal of Neurochemistry, 2013, 124, 432-435.	3.9	33
22	A lysosomeâ€plasma membraneâ€sphingolipid axis linking lysosomal storage to cell growth arrest. FASEB Journal, 2018, 32, 5685-5702.	0.5	32
23	Modulation of cell functions by glycosphingolipid metabolic remodeling in the plasma membrane. Journal of Neurochemistry, 2007, 103, 113-125.	3.9	30
24	<scp>GM</scp> 1 promotes TrkAâ€mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. Journal of Neurochemistry, 2019, 149, 231-241.	3.9	30
25	GM1 Oligosaccharide Crosses the Human Blood–Brain Barrier In Vitro by a Paracellular Route. International Journal of Molecular Sciences, 2020, 21, 2858.	4.1	29
26	Membrane lipid domains in the nervous system. Frontiers in Bioscience - Landmark, 2015, 20, 280-302.	3.0	28
27	Synthesis of radioactive and photoactivable ganglioside derivatives for the study of ganglioside-protein interactions. Glycoconjugate Journal, 2003, 20, 11-23.	2.7	26
28	Homeostatic and pathogenic roles of <scp>GM</scp> 3 ganglioside molecular species in <scp>TLR</scp> 4 signaling in obesity. EMBO Journal, 2020, 39, e101732.	7.8	25
29	Interactions between gangliosides and proteins in the exoplasmic leaflet of neuronal plasma membranes: A study performed with a tritium-labeled GM1 derivative containing a photoactivable group linked to the oligosaccharide chain. Glycoconjugate Journal, 2004, 21, 461-470.	2.7	24
30	Selected natural and synthetic retinoids impair CCR7- and CXCR4-dependent cell migration in vitro and in vivo. Journal of Leukocyte Biology, 2008, 84, 871-879.	3.3	23
31	Sphingolipidomics of A2780 human ovarian carcinoma cells treated with synthetic retinoids. Journal of Lipid Research, 2010, 51, 1832-1840.	4.2	23
32	A procedure for the preparation of GM3 ganglioside from GM1-lactone. Glycoconjugate Journal, 1999, 16, 197-203.	2.7	22
33	A retinoic acid-dependent stroma-leukemia crosstalk promotes chronic lymphocytic leukemia progression. Nature Communications, 2018, 9, 1787.	12.8	22
34	Gangliosides in the differentiation process of primary neurons: the specific role of GM1-oligosaccharide. Glycoconjugate Journal, 2020, 37, 329-343.	2.7	22
35	Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconjugate Journal, 2021, 38, 101-117.	2.7	19
36	Anti-GM1/GD1a complex antibodies in GBS sera specifically recognize the hybrid dimer GM1-GD1a. Glycobiology, 2012, 22, 352-360.	2.5	18

#	Article	IF	CITATIONS
37	The oligosaccharide portion of ganglioside GM1 regulates mitochondrial function in neuroblastoma cells. Glycoconjugate Journal, 2020, 37, 293-306.	2.7	18
38	The structure of gangliosides hides a code for determining neuronal functions. FEBS Open Bio, 2021, 11, 3193-3200.	2.3	18
39	Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. Journal of Biological Chemistry, 2017, 292, 7040-7051.	3.4	15
40	Gangliosides and Cell Surface Ganglioside Glycohydrolases in the Nervous System. Advances in Neurobiology, 2014, 9, 223-244.	1.8	15
41	On the use of cholera toxin. Glycoconjugate Journal, 2018, 35, 161-163.	2.7	14
42	Lipid rafts as platforms for sphingosine 1-phosphate metabolism and signalling. Cellular Signalling, 2021, 80, 109929.	3.6	13
43	Preparation of deacetyl-, lyso-, and deacetyl-lyso-GM3 by selective alkaline hydrolysis of GM3 ganglioside. Journal of Lipid Research, 2001, 42, 1318-1324.	4.2	13
44	Gangliosides and the Treatment of Neurodegenerative Diseases: A Long Italian Tradition. Biomedicines, 2022, 10, 363.	3.2	13
45	Ceramides as Possible Nutraceutical Compounds: Characterization of the Ceramides of the Moro Blood Orange (Citrus sinensis). Journal of Agricultural and Food Chemistry, 2012, 60, 10103-10110.	5.2	12
46	Modulation of calcium signaling depends on the oligosaccharide of GM1 in Neuro2a mouse neuroblastoma cells. Glycoconjugate Journal, 2020, 37, 713-727.	2.7	12
47	GM1 as Adjuvant of Innovative Therapies for Cystic Fibrosis Disease. International Journal of Molecular Sciences, 2020, 21, 4486.	4.1	11
48	Glycosphingolipids. Advances in Experimental Medicine and Biology, 2021, 1325, 61-102.	1.6	11
49	Photoactivable sphingosine as a tool to study membrane microenvironments in cultured cells. Journal of Lipid Research, 2010, 51, 798-808.	4.2	10
50	Aberrant Glycosphingolipid Expression and Membrane Organization in Tumor Cells: Consequences on Tumor–Host Interactions. Advances in Experimental Medicine and Biology, 2011, 705, 643-667.	1.6	10
51	Role of Gangliosides and Plasma Membrane-Associated Sialidase in the Process of Cell Membrane Organization. Advances in Experimental Medicine and Biology, 2011, 705, 297-316.	1.6	10
52	Serum Antibodies to Glycans in Peripheral Neuropathies. Molecular Neurobiology, 2017, 54, 1564-1567.	4.0	9
53	Novel insights on GM1 and Parkinson's disease: A critical review. Glycoconjugate Journal, 2022, 39, 27.	2.7	8
54	Galactocerebrosidase deficiency induces an increase in lactosylceramide content: A new hallmark of Krabbe disease?. International Journal of Biochemistry and Cell Biology, 2022, 145, 106184.	2.8	8

#	Article	IF	CITATIONS
55	Neuronal membrane dynamics as fine regulator of sphingolipid composition. Glycoconjugate Journal, 2018, 35, 397-402.	2.7	6
56	A practical route to long-chain non-natural α,ï‰-diamino acids. Amino Acids, 2013, 44, 435-441.	2.7	5
57	Chemical and Physicochemical Properties of Gangliosides. Methods in Molecular Biology, 2018, 1804, 1-17.	0.9	5
58	Massive Accumulation of Sphingomyelin Affects the Lysosomal and Mitochondria Compartments and Promotes Apoptosis in Niemann-Pick Disease Type A. Journal of Molecular Neuroscience, 2022, 72, 1482-1499.	2.3	5
59	Structure of the main ganglioside from the brain of Xenopus laevis. Glycoconjugate Journal, 2002, 19, 53-57.	2.7	4
60	Procedure for separation of GM2 ganglioside species with different ceramide structures by a flash reversed-phase silica gel liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 796, 1-10.	2.3	4
61	Radioactive Gangliosides for Biological Studies. Methods in Molecular Biology, 2018, 1804, 311-322.	0.9	4
62	Effect of structural modifications of ganglioside GM2 on intra-molecular carbohydrate-to-carbohydrate interaction and enzymatic susceptibility. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 353-361.	2.4	3
63	Assignment by Negative-Ion Electrospray Tandem Mass Spectrometry of the Tetrasaccharide Backbones of Monosialylated Glycans Released from Bovine Brain Gangliosides. Journal of the American Society for Mass Spectrometry, 2018, 29, 1308-1318.	2.8	3
64	Nuclear Magnetic Resonance of Gangliosides. Methods in Molecular Biology, 2018, 1804, 241-284.	0.9	3
65	Isolation and Analysis of Lipid Rafts from Neural Cells and Tissues. Methods in Molecular Biology,	0.9	2