Sidsel Birkelund Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4403498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain. Plant Physiology, 2018, 177, 271-284.	4.8	248
2	Manganese Deficiency in Plants: The Impact on Photosystem II. Trends in Plant Science, 2016, 21, 622-632.	8.8	178
3	The Biochemical Properties of Manganese in Plants. Plants, 2019, 8, 381.	3.5	112
4	The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis. Plant Cell, 2016, 28, tpc.00812.2015.	6.6	94
5	The Plastid Envelope CHLOROPLAST MANGANESE TRANSPORTER1 Is Essential for Manganese Homeostasis in Arabidopsis. Molecular Plant, 2018, 11, 955-969.	8.3	83
6	Latent manganese deficiency increases transpiration in barley (<i>Hordeum vulgare</i>). Physiologia Plantarum, 2009, 135, 307-316.	5.2	82
7	Manganese Deficiency Leads to Genotype-Specific Changes in Fluorescence Induction Kinetics and State Transitions. Plant Physiology, 2009, 150, 825-833.	4.8	79
8	Sensitive Detection of Phosphorus Deficiency in Plants Using Chlorophyll <i>a</i> Fluorescence. Plant Physiology, 2015, 169, 353-361.	4.8	65
9	Chloroplast Transition Metal Regulation for Efficient Photosynthesis. Trends in Plant Science, 2020, 25, 817-828.	8.8	65
10	Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant and Soil, 2013, 372, 417-429.	3.7	60
11	The transporter Syn <scp>PAM</scp> 71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in <i>Synechocystis </i> <scp>PCC</scp> 6803. New Phytologist, 2017, 215, 256-268.	7.3	47
12	Metal Binding in Photosystem II Super- and Subcomplexes from Barley Thylakoids. Plant Physiology, 2015, 168, 1490-1502.	4.8	42
13	Photosystem II Functionality in Barley Responds Dynamically to Changes in Leaf Manganese Status. Frontiers in Plant Science, 2016, 7, 1772.	3.6	34
14	Ancient barley landraces adapted to marginal soils demonstrate exceptional tolerance to manganese limitation. Annals of Botany, 2019, 123, 831-843.	2.9	29
15	Is Bere barley specifically adapted to fertilisation with seaweed as a nutrient source?. Nutrient Cycling in Agroecosystems, 2020, 118, 149-163.	2.2	5
16	Gene Replacement in Arabidopsis Reveals Manganese Transport as an Ancient Feature of Human, Plant and Cyanobacterial UPF0016 Proteins. Frontiers in Plant Science, 2021, 12, 697848.	3.6	5
17	Analysis of Metals in Whole Cells, Thylakoids and Photosynthetic Protein Complexes in Synechocystis sp. PCC6803. Bio-protocol, 2018, 8, e2889.	0.4	0
18	Micronutrients: advances in understanding manganese cycling in soils, acquisition by plants and ways of optimizing manganese efficiency in crops. Burleigh Dodds Series in Agricultural Science, 2020, , 407-454.	0.2	0