List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4402938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging Nitric Oxide and Hydrogen Sulfide Releasing Carriers for Skin Wound Healing Therapy. ChemMedChem, 2022, 17, .	3.2	24
2	Data Processing to Probe the Cellular Hydrogen Peroxide Landscape. Methods in Molecular Biology, 2022, 2385, 153-160.	0.9	1
3	Development of Polycaprolactone–Zeolite Nanoporous Composite Films for Topical Therapeutic Release of Different Gasotransmitters. ACS Applied Nano Materials, 2022, 5, 9230-9240.	5.0	3
4	Storage and delivery of H2S by microporous and mesoporous materials. Microporous and Mesoporous Materials, 2021, 320, 111093.	4.4	8
5	Improved therapeutic nitric oxide delivery by microporous Cu-bearing titanosilicate. Microporous and Mesoporous Materials, 2021, 322, 111154.	4.4	0
6	Chitosan Biocomposites for the Adsorption and Release of H2S. Materials, 2021, 14, 6701.	2.9	6
7	A Comparison of Different Approaches to Quantify Nitric Oxide Release from NO-Releasing Materials in Relevant Biological Media. Molecules, 2020, 25, 2580.	3.8	13
8	Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Tiâ€MOF. Angewandte Chemie - International Edition, 2020, 59, 5135-5143.	13.8	62
9	Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Tiâ€MOF. Angewandte Chemie, 2020, 132, 5173-5181.	2.0	12
10	Human Aquaporin-5 Facilitates Hydrogen Peroxide Permeation Affecting Adaption to Oxidative Stress and Cancer Cell Migration. Cancers, 2019, 11, 932.	3.7	69
11	New generation of nitric oxide-releasing porous materials: Assessment of their potential to regulate biological functions. Nitric Oxide - Biology and Chemistry, 2019, 90, 29-36.	2.7	14
12	Measuring intracellular concentration of hydrogen peroxide with the use of genetically encoded H2O2 biosensor HyPer. Redox Biology, 2019, 24, 101200.	9.0	64
13	Kinetics of the base catalysed hydrolysis of methyl paraben revisited: Implications for determination of the effective volume of flow-microcalorimeters used to study cell cultures. Thermochimica Acta, 2018, 659, 82-88.	2.7	4
14	Using in vivo oxidation status of one- and two-component redox relays to determine H2O2 levels linked to signaling and toxicity. BMC Biology, 2018, 16, 61.	3.8	20
15	Vitamin B3 metal-organic frameworks as potential delivery vehicles for therapeutic nitric oxide. Acta Biomaterialia, 2017, 51, 66-74.	8.3	46
16	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
17	Quantitative biology of hydrogen peroxide signaling. Redox Biology, 2017, 13, 1-7.	9.0	116
18	Noncoding RNAs as Critical Players in Regulatory Accuracy, Redox Signaling, and Immune Cell		0

Functions. , 2017, , 215-284.

#	Article	IF	CITATIONS
19	Rat Aquaporin-5 Is pH-Gated Induced by Phosphorylation and Is Implicated in Oxidative Stress. International Journal of Molecular Sciences, 2016, 17, 2090.	4.1	56
20	Synthetic cobalt clays for the storage and slow release of therapeutic nitric oxide. RSC Advances, 2016, 6, 41195-41203.	3.6	9
21	Storage and delivery of nitric oxide by microporous titanosilicate ETS-10 and Al and Ga substituted analogues. Microporous and Mesoporous Materials, 2016, 229, 83-89.	4.4	14
22	The standard molar enthalpy of the base catalysed hydrolysis of methyl paraben revisited. Journal of Chemical Thermodynamics, 2016, 103, 176-180.	2.0	8
23	Structureâ€based virtual screening toward the discovery of novel inhibitors of the <scp>DNA</scp> repair activity of the human apurinic/apyrimidinic endonuclease 1. Chemical Biology and Drug Design, 2016, 88, 915-925.	3.2	9
24	The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction. Molecules and Cells, 2016, 39, 65-71.	2.6	174
25	Metabolism of Superoxide Radicals and Hydrogen Peroxide in Mitochondria. Oxidative Stress and Disease, 2015, , 3-28.	0.3	0
26	<scp>l</scp> -Histidine-based organoclays for the storage and release of therapeutic nitric oxide. Journal of Materials Chemistry B, 2015, 3, 3556-3563.	5.8	13
27	Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins. Frontiers in Chemistry, 2014, 2, 82.	3.6	21
28	Is the Peroxiredoxin 2/Thioredoxin/Thioredoxin Reductase system in human erythrocytes designed for redox signaling?. Free Radical Biology and Medicine, 2014, 75, S24.	2.9	3
29	ls Peroxiredoxin Il's peroxidase activity strongly inhibited in human erythrocytes?. Free Radical Biology and Medicine, 2014, 75, S23-S24.	2.9	0
30	Cellular polarity in aging: role of redox regulation and nutrition. Genes and Nutrition, 2014, 9, 371.	2.5	17
31	Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biology, 2014, 2, 535-562.	9.0	688
32	Microporous titanosilicates Cu2+– and Co2+–ETS-4 for storage and slow release of therapeutic nitric oxide. Journal of Materials Chemistry B, 2014, 2, 224-230.	5.8	19
33	Hydrogen peroxide metabolism and sensing in human erythrocytes: A validated kinetic model and reappraisal of the role of peroxiredoxin II. Free Radical Biology and Medicine, 2014, 74, 35-49.	2.9	62
34	Clay based materials for storage and therapeutic release of nitric oxide. Journal of Materials Chemistry B, 2013, 1, 3287.	5.8	22
35	Activation of Nrf2 by H2O2. Methods in Enzymology, 2013, 528, 157-171.	1.0	50
36	H2O2 in the Induction of NF-κB-Dependent Selective Gene Expression. Methods in Enzymology, 2013, 528, 173-188.	1.0	11

#	Article	IF	CITATIONS
37	H2O2 Delivery to Cells. Methods in Enzymology, 2013, 526, 159-173.	1.0	35
38	The Cellular Steady-State of H2O2. Methods in Enzymology, 2013, 527, 3-19.	1.0	26
39	Sepiolite based materials for storage and slow release of nitric oxide. New Journal of Chemistry, 2013, 37, 4052.	2.8	23
40	Is the Peroxiredoxin 2 / Thioredoxin / Thioredoxin Reductase System in Human Erythrocytes Evolutionarily Designed for Hydrogen Peroxide-Mediated Signaling?. Free Radical Biology and Medicine, 2013, 65, S161.	2.9	0
41	A quantitative study of the cell-type specific modulation of c-Rel by hydrogen peroxide and TNF-α. Redox Biology, 2013, 1, 347-352.	9.0	12
42	Potential antitumour and pro-oxidative effects of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate (QNACR). Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 1300-1306.	5.2	3
43	Theoretical analysis of the kinetic performance of laboratory- and full-scale composting systems. Waste Management and Research, 2012, 30, 700-707.	3.9	9
44	Sphingolipid-Enriched Microdomains in the Plasma Membrane of Saccharomyces Cerevisiae: Ergosterol-Free «Lipid Rafts» in the Gel Phase. Biophysical Journal, 2012, 102, 27a.	0.5	0
45	The plasma membrane-enriched fraction proteome response during adaptation to hydrogen peroxide in <i>Saccharomyces cerevisiae</i> . Free Radical Research, 2012, 46, 1267-1279.	3.3	9
46	Cytotoxic effects of N'-formyl-2-(5-nitrothiophen-2-yl) benzothiazole-6-carbohydrazide in human breast tumor cells by induction of oxidative stress. Anticancer Research, 2012, 32, 2721-6.	1.1	11
47	Biphasic modulation of fatty acid synthase by hydrogen peroxide in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 2011, 515, 107-111.	3.0	11
48	Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells. Leukemia, 2011, 25, 960-967.	7.2	101
49	Gel Domains in the Plasma Membrane of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 5043-5054.	3.4	94
50	Diagnosis and optimization of the composting process in full-scale mechanical-biological treatment plants. Waste Management and Research, 2011, 29, 565-573.	3.9	7
51	Glyceraldehyde-3-phosphate dehydrogenase is largely unresponsive to low regulatory levels of hydrogen peroxide in Saccharomyces cerevisiae. BMC Biochemistry, 2010, 11, 49.	4.4	18
52	Composting kinetics in full-scale mechanical–biological treatment plants. Waste Management, 2010, 30, 1908-1921.	7.4	44
53	Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae. Free Radical Biology and Medicine, 2009, 46, 289-298.	2.9	49
54	Redox Regulation of NF-κB: From Basic to Clinical Research. Antioxidants and Redox Signaling, 2009, 11, 2055-2056.	5.4	21

#	Article	IF	CITATIONS
55	Modulation of NF-κB–Dependent Gene Expression by H ₂ O ₂ : A Major Role for a Simple Chemical Process in a Complex Biological Response. Antioxidants and Redox Signaling, 2009, 11, 2043-2053.	5.4	26
56	Role of Hydrogen Peroxide in NF-Î $^\circ$ B Activation: From Inducer to Modulator. Antioxidants and Redox Signaling, 2009, 11, 2223-2243.	5.4	208
57	H2O2 induces rapid biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1141-1147.	2.6	68
58	A Quantitative Study of NF-κB Activation by H2O2: Relevance in Inflammation and Synergy with TNF-α. Journal of Immunology, 2007, 178, 3893-3902.	0.8	114
59	On the Biologic Role of the Reaction of NO with Oxidized Cytochrome <i>c</i> Oxidase. Antioxidants and Redox Signaling, 2007, 9, 1569-1580.	5.4	56
60	Down-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2. Free Radical Biology and Medicine, 2007, 43, 1458-1465.	2.9	28
61	The mechanism of cytochrome C oxidase inhibition by nitric oxide. Frontiers in Bioscience - Landmark, 2007, 12, 975.	3.0	18
62	Tools for kinetic modeling of biochemical networks. Nature Biotechnology, 2006, 24, 667-672.	17.5	180
63	Redox interactions of nitric oxide with dopamine and its derivatives. Toxicology, 2005, 208, 207-212.	4.2	49
64	Decrease of H2O2 Plasma Membrane Permeability during Adaptation to H2O2 in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 6501-6506.	3.4	139
65	On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16774-16779.	7.1	169
66	Decreased cellular permeability to H2O2protectsSaccharomyces cerevisiaecells in stationary phase against oxidative stress. FEBS Letters, 2004, 578, 152-156.	2.8	101
67	Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. FEBS Journal, 2003, 270, 3778-3786.	0.2	249
68	Diagnosis of enzyme inhibition based on the degree of inhibition. Biochimica Et Biophysica Acta - General Subjects, 2003, 1624, 11-20.	2.4	13
69	Voltage-dependent Anion Channels Control the Release of the Superoxide Anion from Mitochondria to Cytosol. Journal of Biological Chemistry, 2003, 278, 5557-5563.	3.4	611
70	Mitochondrial superoxide anion production and release into intermembrane space. Methods in Enzymology, 2002, 349, 271-280.	1.0	26
71	Mitochondrial damage by nitric oxide is potentiated by dopamine in PC12 cells. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 233-238.	1.0	34
72	Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radical Biology and Medicine, 2002, 33, 1260-1267.	2.9	136

#	Article	IF	CITATIONS
73	Determination of the α-Tocopherol Inhibition Rate Constant for Peroxidation in Low-Density Lipoprotein. Chemical Research in Toxicology, 2002, 15, 870-876.	3.3	20
74	Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochemical Journal, 2001, 356, 549-555.	3.7	246
75	Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochemical Journal, 2001, 356, 549.	3.7	170
76	Cellular titration of apoptosis with steady state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through fenton chemistry independent of the cellular thiol state. Free Radical Biology and Medicine, 2001, 30, 1008-1018.	2.9	217
77	Estimation of H2 O2 gradients across biomembranes. FEBS Letters, 2000, 475, 121-126.	2.8	438
78	Analysis of the pathways of nitric oxide utilization in mitochondria. Free Radical Research, 2000, 33, 747-756.	3.3	60
79	On the antioxidant activity of melatonin. Free Radical Biology and Medicine, 1999, 26, 117-128.	2.9	110
80	Reaction of Ubiquinols with Nitric Oxide. , 1999, , 143-163.		1
81	Determination of propagation and termination rate constants by using an extension to the rotating-sector method: Application to PLPC and DLPC bilayers. International Journal of Chemical Kinetics, 1998, 30, 753-767.	1.6	12
82	The efficiency of antioxidants delivered by liposomal transfer. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1328, 1-12.	2.6	18
83	Role of Glutathione Peroxidase and Phospholipid Hydroperoxide Glutathione Peroxidase in the Reduction of Lysophospholipid Hydroperoxides. Free Radical Biology and Medicine, 1997, 22, 871-883.	2.9	51
84	Antioxidant Activity of Vitamin E Determined in a Phospholipid Membrane by Product Studies:Â Avoiding Chain Transfer Reactions by Vitamin E Radicals. Journal of the American Chemical Society, 1997, 119, 5764-5765.	13.7	35
85	Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free Radical Biology and Medicine, 1996, 21, 917-943.	2.9	128
86	PHGPx and phospholipase A2/GPx: Comparative importance on the reduction of hydroperoxides in rat liver mitochondria. Free Radical Biology and Medicine, 1995, 19, 669-677.	2.9	63
87	Kinetic Modelling of in Vitro Lipid Peroxidation Experiments - 'Low Level' Validation of a Model of in Vivo Lipid Peroxidation. Free Radical Research. 1995. 23. 151-172.	3.3	14