Hugo J G Snippert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4401596/publications.pdf

Version: 2024-02-01

50 papers

18,531 citations

32 h-index 50 g-index

50 all docs 50 docs citations

50 times ranked

22234 citing authors

#	Article	IF	CITATIONS
1	Efficient and error-free fluorescent gene tagging in human organoids without double-strand DNA cleavage. PLoS Biology, 2022, 20, e3001527.	5.6	7
2	Liver Colonization by Colorectal Cancer Metastases Requires YAP-Controlled Plasticity at the Micrometastatic Stage. Cancer Research, 2022, 82, 1953-1968.	0.9	29
3	Retrograde movements determine effective stem cell numbers in the intestine. Nature, 2022, 607, 548-554.	27.8	26
4	Quantifying single-cell ERK dynamics in colorectal cancer organoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling. Nature Cell Biology, 2021, 23, 377-390.	10.3	71
5	Chromosomal copy number heterogeneity predicts survival rates across cancers. Nature Communications, 2021, 12, 3188.	12.8	43
6	Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns. Nature Genetics, 2021, 53, 1187-1195.	21.4	37
7	Diverse <i>BRAF</i> Gene Fusions Confer Resistance to EGFR-Targeted Therapy via Differential Modulation of BRAF Activity. Molecular Cancer Research, 2020, 18, 537-548.	3.4	14
8	Intestinal Regeneration: Regulation by the Microenvironment. Developmental Cell, 2020, 54, 435-446.	7.0	91
9	Introducing the Stem Cell ASCL2 Reporter STAR into Intestinal Organoids. STAR Protocols, 2020, 1, 100126.	1.2	4
10	High-Resolution mRNA and Secretome Atlas of Human Enteroendocrine Cells. Cell, 2020, 181, 1291-1306.e19.	28.9	110
11	Plasticity of Lgr5-Negative Cancer Cells Drives Metastasis in Colorectal Cancer. Cell Stem Cell, 2020, 26, 569-578.e7.	11.1	180
12	Snake Venom Gland Organoids. Cell, 2020, 180, 233-247.e21.	28.9	77
13	Colorectal Cancer Modeling with Organoids: Discriminating between Oncogenic RAS and BRAF Variants. Trends in Cancer, 2020, 6, 111-129.	7.4	9
14	Chromatin restriction by the nucleosome remodeler Mi- $2\hat{l}^2$ and functional interplay with lineage-specific transcription regulators control B-cell differentiation. Genes and Development, 2019, 33, 763-781.	5.9	26
15	An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nature Medicine, 2019, 25, 838-849.	30.7	486
16	High-resolution 3D imaging of fixed and cleared organoids. Nature Protocols, 2019, 14, 1756-1771.	12.0	317
17	Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nature Genetics, 2019, 51, 824-834.	21.4	162
18	CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition. Oncotarget, 2019, 10, 1440-1457.	1.8	19

#	Article	IF	CITATIONS
19	Specific Labeling of Stem Cell Activity in Human Colorectal Organoids Using an ASCL2-Responsive Minigene. Cell Reports, 2018, 22, 1600-1614.	6.4	28
20	A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression. Nature Protocols, 2018, 13, 235-247.	12.0	71
21	Long noncoding RNAs in gut stem cells. Nature Cell Biology, 2018, 20, 1106-1107.	10.3	2
22	Integrative multiâ€omics analysis of intestinal organoid differentiation. Molecular Systems Biology, 2018, 14, e8227.	7.2	106
23	How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Research, 2018, 46, 6435-6454.	14.5	37
24	Live imaging of cell division in 3D stem-cell organoid cultures. Methods in Cell Biology, 2018, 145, 91-106.	1.1	17
25	Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature, 2017, 543, 424-427.	27.8	363
26	Cancer systems biology: Live imaging of intestinal tissue in health and disease. Current Opinion in Systems Biology, 2017, 2, 19-28.	2.6	4
27	In Vivo Imaging Reveals Existence of Crypt Fission and Fusion inÂAdult Mouse Intestine. Gastroenterology, 2017, 153, 674-677.e3.	1.3	47
28	Expanding the Tissue Toolbox: Deriving Colon Tissue from Human Pluripotent Stem Cells. Cell Stem Cell, 2017, 21, 3-5.	11.1	2
29	Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells. PLoS ONE, 2017, 12, e0179514.	2.5	34
30	Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. ELife, 2016, 5, .	6.0	191
31	Colonic Crypts: Safe Haven from Microbial Products. Cell, 2016, 165, 1564-1566.	28.9	6
32	Microbiota Controls the Homeostasis of Glial Cells in the Gut Lamina Propria. Neuron, 2015, 85, 289-295.	8.1	271
33	Sequential cancer mutations in cultured human intestinal stem cells. Nature, 2015, 521, 43-47.	27.8	853
34	The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system. Gut Microbes, 2015, 6, 398-403.	9.8	45
35	Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature, 2014, 507, 362-365.	27.8	431
36	Stem cell dynamics in homeostasis and cancer of the intestine. Nature Reviews Cancer, 2014, 14, 468-480.	28.4	206

#	Article	IF	CITATIONS
37	Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Reports, 2014, 15, 62-69.	4.5	203
38	Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nature Neuroscience, 2013, 16, 580-586.	14.8	340
39	Identification of a clonally expanding haematopoietic compartment in bone marrow. EMBO Journal, 2012, 32, 219-230.	7.8	70
40	Lineage Tracing Reveals Lgr5 ⁺ Stem Cell Activity in Mouse Intestinal Adenomas. Science, 2012, 337, 730-735.	12.6	991
41	Slide preparation for single-cell–resolution imaging of fluorescent proteins in their three-dimensional near-native environment. Nature Protocols, 2011, 6, 1221-1228.	12.0	34
42	Tracking adult stem cells. EMBO Reports, 2011, 12, 113-122.	4.5	163
43	Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011, 469, 415-418.	27.8	2,054
44	Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells. Cell, 2010, 143, 134-144.	28.9	1,679
45	Lgr5+ve Stem Cells Drive Self-Renewal in the Stomach and Build Long-Lived Gastric Units In Vitro. Cell Stem Cell, 2010, 6, 25-36.	11.1	1,315
46	<i>Lgr6</i> Marks Stem Cells in the Hair Follicle That Generate All Cell Lineages of the Skin. Science, 2010, 327, 1385-1389.	12.6	692
47	Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459, 262-265.	27.8	5,339
48	Prominin-1/CD133 Marks Stem Cells and Early Progenitors in Mouse Small Intestine. Gastroenterology, 2009, 136, 2187-2194.e1.	1.3	215
49	Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genetics, 2008, 40, 1291-1299.	21.4	846
50	The role of the chromatin remodeler Mi- $2\hat{l}^2$ in hematopoietic stem cell self-renewal and multilineage differentiation. Genes and Development, 2008, 22, 1174-1189.	5.9	168