Kristen M S O'connell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4400740/publications.pdf

Version: 2024-02-01

22 papers 1,533 citations

471509 17 h-index 642732 23 g-index

28 all docs

 $\begin{array}{c} 28 \\ \text{docs citations} \end{array}$

times ranked

28

1932 citing authors

#	Article	IF	CITATIONS
1	Translational approaches to understanding resilience to Alzheimer's disease. Trends in Neurosciences, 2022, 45, 369-383.	8.6	28
2	Identifying the molecular systems that influence cognitive resilience to Alzheimer's disease in genetically diverse mice. Learning and Memory, 2020, 27, 355-371.	1.3	15
3	Genetic background modifies CNSâ€mediated sensorimotor decline in the ADâ€BXD mouse model of genetic diversity in Alzheimer's disease. Genes, Brain and Behavior, 2019, 18, e12603.	2.2	14
4	Gene-by-environment interactions in Alzheimer's disease and Parkinson's disease. Neuroscience and Biobehavioral Reviews, 2019, 103, 73-80.	6.1	99
5	Harnessing Genetic Complexity to Enhance Translatability of Alzheimer's Disease Mouse Models: A Path toward Precision Medicine. Neuron, 2019, 101, 399-411.e5.	8.1	162
6	Human dental stem cell derived transgeneâ€free iPSCs generate functional neurons via embryoid bodyâ€mediated and direct induction methods. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1836-e1851.	2.7	18
7	Systems genetics identifies $Hp1bp3$ as a novel modulator of cognitive aging. Neurobiology of Aging, 2016, 46, 58-67.	3.1	34
8	Diet composition, not calorie intake, rapidly alters intrinsic excitability of hypothalamic AgRP/NPY neurons in mice. Scientific Reports, 2015 , 5 , 16810 .	3.3	41
9	Leptin Modulates the Intrinsic Excitability of AgRP/NPY Neurons in the Arcuate Nucleus of the Hypothalamus. Journal of Neuroscience, 2014, 34, 5486-5496.	3.6	137
10	Localization-dependent activity of the Kv2.1 delayed-rectifier K ⁺ channel. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12351-12356.	7.1	111
11	Localization and mobility of the delayed-rectifer K ⁺ channel Kv2.1 in adult cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H229-H237.	3.2	37
12	A cytoskeletal-based perimeter fence selectively corrals a sub-population of cell surface Kv2.1 channels. Journal of Cell Science, 2007, 120, 2413-2423.	2.0	84
13	Kv2.1 Potassium Channels Are Retained within Dynamic Cell Surface Microdomains That Are Defined by a Perimeter Fence. Journal of Neuroscience, 2006, 26, 9609-9618.	3.6	115
14	Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. Journal of Cell Science, 2005, 118, 2155-2166.	2.0	109
15	Functional analysis of the R1086H malignant hyperthermia mutation in the DHPR reveals an unexpected influence of the III-IV loop on skeletal muscle EC coupling. American Journal of Physiology - Cell Physiology, 2004, 287, C1094-C1102.	4.6	107
16	Localization of Ion Channels to Lipid Raft Domains within the Cardiovascular System. Trends in Cardiovascular Medicine, 2004, 14 , 37 - 42 .	4.9	90
17	Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends in Pharmacological Sciences, 2004, 25, 16-21.	8.7	166
18	The Pore Region of the Skeletal Muscle Ryanodine Receptor Is a Primary Locus for Excitation-Contraction Uncoupling in Central Core Disease. Journal of General Physiology, 2003, 121, 277-286.	1.9	70

#	ARTICLE	IF	CITATIONS
19	Suramin Interacts with the Calmodulin Binding Site on the Ryanodine Receptor, RYR1. Journal of Biological Chemistry, 2002, 277, 49167-49174.	3.4	16
20	Calmodulin Binding to the 3614–3643 Region of RyR1 Is Not Essential for Excitation–Contraction Coupling in Skeletal Myotubes. Journal of General Physiology, 2002, 120, 337-347.	1.9	22
21	Ca2+ Release through Ryanodine Receptors Regulates Skeletal Muscle L-type Ca2+ Channel Expression. Journal of Biological Chemistry, 2001, 276, 17732-17738.	3.4	43
22	Prolonged depolarization promotes fast gating kinetics of Lâ€type Ca 2+ channels in mouse skeletal myotubes. Journal of Physiology, 2000, 529, 647-659.	2.9	8