
Johannes C Walter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4400264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CDC7-independent G1/S transition revealed by targeted protein degradation. Nature, 2022, 605, 357-365.	27.8	38
2	The HMCES DNA-protein cross-link functions as an intermediate in DNA interstrand cross-link repair. Nature Structural and Molecular Biology, 2022, 29, 451-462.	8.2	17
3	The Ubiquitin Ligase TRAIP: Double-Edged Sword at the Replisome. Trends in Cell Biology, 2021, 31, 75-85.	7.9	18
4	Single-strand DNA breaks cause replisome disassembly. Molecular Cell, 2021, 81, 1309-1318.e6.	9.7	62
5	ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation. Nature Cell Biology, 2021, 23, 595-607.	10.3	38
6	Mechanisms of Vertebrate DNA Interstrand Cross-Link Repair. Annual Review of Biochemistry, 2021, 90, 107-135.	11.1	69
7	Structure of CRL2Lrr1, the E3 ubiquitin ligase that promotes DNA replication termination in vertebrates. Nucleic Acids Research, 2021, 49, 13194-13206.	14.5	4
8	A Mechanism to Minimize Errors during Non-homologous End Joining. Molecular Cell, 2020, 77, 1080-1091.e8.	9.7	65
9	The DNA replication fork suppresses CMG unloading from chromatin before termination. Genes and Development, 2020, 34, 1534-1545.	5.9	34
10	The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. Nature Communications, 2020, 11, 2104.	12.8	91
11	The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells. Molecular Cell, 2020, 79, 221-233.e5.	9.7	28
12	A new varietal of DNA interstrand crosslink repair. Cell Research, 2020, 30, 459-460.	12.0	3
13	Extracts for Analysis of DNA Replication in a Nucleus-Free System. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot097154.	0.3	29
14	TRAIP is a master regulator of DNA interstrand crosslink repair. Nature, 2019, 567, 267-272.	27.8	128
15	Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rearrangements. Molecular Cell, 2019, 73, 915-929.e6.	9.7	110
16	The CMG Helicase Bypasses DNA-Protein Cross-Links to Facilitate Their Repair. Cell, 2019, 176, 167-181.e21.	28.9	138
17	Replication-Coupled DNA-Protein Crosslink Repair by SPRTN and the Proteasome in Xenopus Egg Extracts. Molecular Cell, 2019, 73, 574-588.e7.	9.7	135
18	A single XLF dimer bridges DNA ends during nonhomologous end joining. Nature Structural and Molecular Biology, 2018, 25, 877-884.	8.2	52

#	Article	IF	CITATIONS
19	Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading. Cell Reports, 2018, 23, 3419-3428.	6.4	63
20	CRL2 ^{Lrr1} promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes and Development, 2017, 31, 275-290.	5.9	90
21	Mechanisms of DNA replication termination. Nature Reviews Molecular Cell Biology, 2017, 18, 507-516.	37.0	114
22	Ensemble and Single-Molecule Analysis of Non-Homologous End Joining in Frog Egg Extracts. Methods in Enzymology, 2017, 591, 233-270.	1.0	19
23	Assays to Study Mitotic Centrosome and Spindle Pole Assembly and Regulation. Methods in Molecular Biology, 2016, 1413, 207-235.	0.9	1
24	Replication-Dependent Unhooking of DNA Interstrand Cross-Links by the NEIL3 Glycosylase. Cell, 2016, 167, 498-511.e14.	28.9	164
25	Two-Stage Synapsis of DNA Ends during Non-homologous End Joining. Molecular Cell, 2016, 61, 850-858.	9.7	162
26	DNA interstrand cross-link repair requires replication-fork convergence. Nature Structural and Molecular Biology, 2015, 22, 242-247.	8.2	127
27	Regulation of the Rev1–pol ζ complex during bypass of a <scp>DNA</scp> interstrand crossâ€ŀink. EMBO Journal, 2015, 34, 1971-1985.	7.8	100
28	Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science, 2015, 348, 1253671.	12.6	183
29	Single-Molecule Visualization of MCM2-7 DNA Loading: Seeing Is Believing. Cell, 2015, 161, 429-430.	28.9	7
30	The mechanism of DNA replication termination in vertebrates. Nature, 2015, 525, 345-350.	27.8	125
31	What is the DNA repair defect underlying Fanconi anemia?. Current Opinion in Cell Biology, 2015, 37, 49-60.	5.4	124
32	Thymine DNA Glycosylase Is a CRL4Cdt2 Substrate. Journal of Biological Chemistry, 2014, 289, 23043-23055.	3.4	40
33	XPF-ERCC1 Acts in Unhooking DNA Interstrand Crosslinks in Cooperation with FANCD2 and FANCP/SLX4. Molecular Cell, 2014, 54, 460-471.	9.7	254
34	Prereplication-complex formation: a molecular double take?. Nature Structural and Molecular Biology, 2014, 21, 20-25.	8.2	63
35	The Cep192-Organized Aurora A-Plk1 Cascade Is Essential for Centrosome Cycle and Bipolar Spindle Assembly. Molecular Cell, 2014, 55, 578-591.	9.7	161
36	BRCA1 Promotes Unloading of the CMG Helicase from a Stalled DNA Replication Fork. Molecular Cell, 2014, 56, 174-185.	9.7	101

#	Article	IF	CITATIONS
37	Repair of a DNA-Protein Crosslink by Replication-Coupled Proteolysis. Cell, 2014, 159, 346-357.	28.9	190
38	Mechanism and regulation of incisions during DNA interstrand cross-link repair. DNA Repair, 2014, 19, 135-142.	2.8	166
39	Molecular watchdogs on genome patrol. ELife, 2014, 3, e02854.	6.0	3
40	Chromosome Biology: Conflict Management for Replication and Transcription. Current Biology, 2013, 23, R200-R202.	3.9	2
41	The MCM8-MCM9 Complex Promotes RAD51 Recruitment at DNA Damage Sites To Facilitate Homologous Recombination. Molecular and Cellular Biology, 2013, 33, 1632-1644.	2.3	100
42	Mechanism of replicationâ€coupled DNA interstrand crossâ€link repair. FASEB Journal, 2013, 27, .	0.5	0
43	Direct Role for Proliferating Cell Nuclear Antigen in Substrate Recognition by the E3 Ubiquitin Ligase CRL4Cdt2. Journal of Biological Chemistry, 2012, 287, 11410-11421.	3.4	43
44	Construction of Plasmids Containing Site-Specific DNA Interstrand Cross-Links for Biochemical and Cell Biological Studies. Methods in Molecular Biology, 2012, 920, 203-219.	0.9	29
45	Bypass of a protein barrier by a replicative DNA helicase. Nature, 2012, 492, 205-209.	27.8	85
46	Single-molecule analysis of DNA replication in Xenopus egg extracts. Methods, 2012, 57, 179-186.	3.8	50
47	A general approach to break the concentration barrier in single-molecule imaging. Nature Methods, 2012, 9, 987-992.	19.0	76
48	A Novel Function for BRCA1 In Crosslink Repair. Molecular Cell, 2012, 46, 111-112.	9.7	10
49	Replication-Coupled DNA Interstrand Cross-Link Repair in Xenopus Egg Extracts. Methods in Molecular Biology, 2012, 920, 221-243.	0.9	30
50	Ribonucleotide Reductase Activity Is Coupled to DNA Synthesis via Proliferating Cell Nuclear Antigen. Current Biology, 2012, 22, 720-726.	3.9	24
51	Selective Bypass of a Lagging Strand Roadblock by the Eukaryotic Replicative DNA Helicase. Cell, 2011, 146, 931-941.	28.9	317
52	A Genome-wide Screen Identifies p97 as an Essential Regulator of DNA Damage-Dependent CDT1 Destruction. Molecular Cell, 2011, 44, 72-84.	9.7	106
53	Mechanism of RAD51-Dependent DNA Interstrand Cross-Link Repair. Science, 2011, 333, 84-87.	12.6	213
54	DNA is a co-factor for its own replication in Xenopus egg extracts. Nucleic Acids Research, 2011, 39, 545-555.	14.5	14

#	Article	IF	CITATIONS
55	Mechanism of CRL4 ^{Cdt2} , a PCNA-dependent E3 ubiquitin ligase. Genes and Development, 2011, 25, 1568-1582.	5.9	196
56	DNA Replication: Metazoan Sld3 Steps Forward. Current Biology, 2010, 20, R515-R517.	3.9	8
57	Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven spindle assembly by engaging in organelle-specific Aurora A activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21022-21027.	7.1	101
58	CRL4Cdt2-Mediated Destruction of the Histone Methyltransferase Set8 Prevents Premature Chromatin Compaction in S Phase. Molecular Cell, 2010, 40, 22-33.	9.7	201
59	Uncoupling of Sister Replisomes during Eukaryotic DNA Replication. Molecular Cell, 2010, 40, 834-840.	9.7	126
60	Proliferating Cell Nuclear Antigen Uses Two Distinct Modes to Move along DNA. Journal of Biological Chemistry, 2009, 284, 17700-17710.	3.4	114
61	Docking of a Specialized PIP Box onto Chromatin-Bound PCNA Creates a Degron for the Ubiquitin Ligase CRL4Cdt2. Molecular Cell, 2009, 35, 93-104.	9.7	161
62	The Fanconi Anemia Pathway Promotes Replication-Dependent DNA Interstrand Cross-Link Repair. Science, 2009, 326, 1698-1701.	12.6	454
63	DNA Replication in Nucleus-Free Xenopus Egg Extracts. Methods in Molecular Biology, 2009, 521, 229-252.	0.9	103
64	Mechanism of Replication-Coupled DNA Interstrand Crosslink Repair. Cell, 2008, 134, 969-980.	28.9	443
65	Domain Architecture and Biochemical Characterization of Vertebrate Mcm10. Journal of Biological Chemistry, 2008, 283, 3338-3348.	3.4	47
66	Cdc7–Drf1 kinase links chromosome cohesion to the initiation of DNA replication in <i>Xenopus</i> egg extracts. Genes and Development, 2008, 22, 1894-1905.	5.9	103
67	Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes and Development, 2007, 21, 497-518.	5.9	355
68	New Myc-anisms for DNA Replication and Tumorigenesis?. Cancer Cell, 2007, 12, 102-103.	16.8	28
69	Mechanism of preâ€RCâ€dependent cohesin loading in Xenopus egg extracts. FASEB Journal, 2007, 21, A94.	0.5	1
70	The Nucleosomal Surface as a Docking Station for Kaposi's Sarcoma Herpesvirus LANA. Science, 2006, 311, 856-861.	12.6	469
71	The BRCA1/BARD1 Heterodimer Modulates Ran-Dependent Mitotic Spindle Assembly. Cell, 2006, 127, 539-552.	28.9	266
72	Getting a Grip on Licensing: Mechanism of Stable Mcm2-7 Loading onto Replication Origins. Molecular Cell, 2006, 21, 143-144.	9.7	28

5

#	Article	IF	CITATIONS
73	Localization of MCM2-7, Cdc45, and GINS to the Site of DNA Unwinding during Eukaryotic DNA Replication. Molecular Cell, 2006, 21, 581-587.	9.7	324
74	A Family of Diverse Cul4-Ddb1-Interacting Proteins Includes Cdt2, which Is Required for S Phase Destruction of the Replication Factor Cdt1. Molecular Cell, 2006, 23, 709-721.	9.7	551
75	PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nature Cell Biology, 2006, 8, 84-90.	10.3	286
76	Protein Phosphatase 2A Antagonizes ATM and ATR in a Cdk2- and Cdc7-Independent DNA Damage Checkpoint. Molecular and Cellular Biology, 2006, 26, 1997-2011.	2.3	64
77	PCNA Is a Cofactor for Cdt1 Degradation by CUL4/DDB1-mediated N-terminal Ubiquitination. Journal of Biological Chemistry, 2006, 281, 6246-6252.	3.4	215
78	Chromosomal DNA Replication in a Soluble Cell-Free System Derived From Xenopus Eggs. Methods in Molecular Biology, 2006, 322, 121-137.	0.9	32
79	Pumps, paradoxes and ploughshares: mechanism of the MCM2–7 DNA helicase. Trends in Biochemical Sciences, 2005, 30, 437-444.	7.5	146
80	Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes and Development, 2005, 19, 114-126.	5.9	179
81	Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes and Development, 2005, 19, 1040-1052.	5.9	635
82	Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes and Development, 2005, 19, 2295-2300.	5.9	65
83	Eukaryotic origins of DNA replication: could you please be more specific?. Seminars in Cell and Developmental Biology, 2005, 16, 343-353.	5.0	91
84	Initiation of DNA replication in xenopus egg extracts. Frontiers in Bioscience - Landmark, 2004, 9, 3029.	3.0	24
85	Cdk1: Unsung Hero of S Phase?. Cell Cycle, 2004, 3, 399-401.	2.6	13
86	Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nature Cell Biology, 2004, 6, 991-996.	10.3	180
87	A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO Journal, 2004, 23, 3667-3676.	7.8	221
88	Self-Assembling Protein Microarrays. Science, 2004, 305, 86-90.	12.6	537
89	Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes and Development, 2003, 17, 1894-1908.	5.9	256
90	DNA replication of mitotic chromatin in Xenopus egg extracts. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13241-13246.	7.1	31

#	Article	IF	CITATIONS
91	MCM2–7 Complexes Bind Chromatin in a Distributed Pattern Surrounding the Origin Recognition Complex inXenopus Egg Extracts. Journal of Biological Chemistry, 2002, 277, 33049-33057.	3.4	237
92	Protein Phosphatase 2A Regulates Binding of Cdc45 to the Prereplication Complex. Journal of Biological Chemistry, 2002, 277, 40520-40527.	3.4	42
93	The Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication. Journal of Cell Biology, 2002, 159, 541-547.	5.2	126
94	Xenopus Mcm10 Binds to Origins of DNA Replication after Mcm2-7 and Stimulates Origin Binding of Cdc45. Molecular Cell, 2002, 9, 233-240.	9.7	170
95	Evidence for Sequential Action of cdc7 and cdk2 Protein Kinases during Initiation of DNA Replication in Xenopus Egg Extracts. Journal of Biological Chemistry, 2000, 275, 39773-39778.	3.4	142
96	Initiation of Eukaryotic DNA Replication. Molecular Cell, 2000, 5, 617-627.	9.7	372
97	Inhibition of Eukaryotic DNA Replication by Geminin Binding to Cdt1. Science, 2000, 290, 2309-2312.	12.6	660
98	Regulated Chromosomal DNA Replication in the Absence of a Nucleus. Molecular Cell, 1998, 1, 519-529.	9.7	264
99	Regulation of Replicon Size inXenopusEgg Extracts. Science, 1997, 275, 993-995.	12.6	160
100	DNA binding specificity of two homeodomain proteins in vitro and in Drosophila embryos Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2680-2685.	7.1	42
101	Two homeo domain proteins bind with similar specificity to a wide range of DNA sites in Drosophila embryos Genes and Development, 1994, 8, 1678-1692.	5.9	115