Majid Ebrahimi Warkiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4399043/publications.pdf

Version: 2024-02-01

184 papers 8,955 citations

47006 47 h-index 87 g-index

189 all docs

189 docs citations

189 times ranked 9720 citing authors

#	Article	IF	Citations
1	Emerging Standards and the Hybrid Model for Organizing Scientific Events During and After the COVID-19 Pandemic. Disaster Medicine and Public Health Preparedness, 2022, 16, 1172-1177.	1.3	27
2	Advances and enabling technologies for phase-specific cell cycle synchronisation. Lab on A Chip, 2022, 22, 445-462.	6.0	2
3	Decellularized human amniotic membrane reinforced by MoS ₂ -Polycaprolactone nanofibers, a novel conductive scaffold for cardiac tissue engineering. Journal of Biomaterials Applications, 2022, 36, 1527-1539.	2.4	11
4	Developing Novel Fabrication and Optimisation Strategies on Aggregation-Induced Emission Nanoprobe/Polyvinyl Alcohol Hydrogels for Bio-Applications. Molecules, 2022, 27, 1002.	3.8	2
5	<i $>$ Giardia $<$ $/$ i $>$ purification from fecal samples using rigid spiral inertial microfluidics. Biomicrofluidics, 2022, 16, .	2.4	3
6	Clinical Applications of Circulating Tumour Cells and Circulating TumourÂDNA in Non-Small Cell LungÂCancer—An Update. Frontiers in Oncology, 2022, 12, 859152.	2.8	15
7	Microengineered filters for efficient delivery of nanomaterials into mammalian cells. Scientific Reports, 2022, 12, 4383.	3.3	3
8	Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics, 2022, 14, 586.	4.5	23
9	Single-cell analysis of circulating tumour cells: enabling technologies and clinical applications. Trends in Biotechnology, 2022, 40, 1041-1060.	9.3	16
10	Advancing Standard Techniques for Treatment of Perianal Fistula; When Tissue Engineering Meets Seton. Health Sciences Review, 2022, , 100026.	1.5	1
11	Microfluidic-Based Droplets for Advanced Regenerative Medicine: Current Challenges and Future Trends. Biosensors, 2022, 12, 20.	4.7	14
12	Inertial Microfluidic Purification of CARâ€Tâ€Cell Products. Advanced Biology, 2022, 6, 2101018.	2.5	2
13	Attenuation of Cigarette-Smoke-Induced Oxidative Stress, Senescence, and Inflammation by Berberine-Loaded Liquid Crystalline Nanoparticles: In Vitro Study in 16HBE and RAW264.7 Cells. Antioxidants, 2022, 11, 873.	5.1	24
14	A modular 3D printed microfluidic system: a potential solution for continuous cell harvesting in large-scale bioprocessing. Bioresources and Bioprocessing, 2022, 9, .	4.2	7
15	Understanding the tumor microenvironment in head and neck squamous cell carcinoma. Clinical and Translational Immunology, 2022, $11,\dots$	3.8	10
16	Prognostic value of integrating circulating tumour cells and cell-free DNA in non-small cell lung cancer. Heliyon, 2022, 8, e09971.	3.2	4
17	Isolation of Circulating Tumor Cells from Seminal Fluid of Patients with Prostate Cancer Using Inertial Microfluidics. Cancers, 2022, 14, 3364.	3.7	10
18	Mesenchymal stem cells induce PD‣1 expression through the secretion of CCL5 in breast cancer cells. Journal of Cellular Physiology, 2021, 236, 3918-3928.	4.1	25

#	Article	IF	Citations
19	A two-step microengineered system for high-density cell retention from bioreactors. Separation and Purification Technology, 2021, 254, 117610.	7.9	9
20	Unidirectional intercellular communication on a microfluidic chip. Biosensors and Bioelectronics, 2021, 175, 112833.	10.1	17
21	Understanding the tumor microenvironment for effective immunotherapy. Medicinal Research Reviews, 2021, 41, 1474-1498.	10.5	130
22	Advances of microfluidic technology in reproductive biology. Life Sciences, 2021, 265, 118767.	4.3	26
23	Characterizing the effect of substrate stiffness on the extravasation potential of breast cancer cells using a 3D microfluidic model. Biotechnology and Bioengineering, 2021, 118, 823-835.	3.3	16
24	Emerging role of circulating tumor cells in immunotherapy. Theranostics, 2021, 11, 8057-8075.	10.0	19
25	A Comprehensive Review on Intracellular Delivery. Advanced Materials, 2021, 33, e2005363.	21.0	58
26	Miniature autoâ€perfusion bioreactor system with spiral microfluidic cell retention device. Biotechnology and Bioengineering, 2021, 118, 1951-1961.	3.3	15
27	The role of 3D printing in the fight against COVID-19 outbreak. Journal of 3D Printing in Medicine, 2021, 5, 51-60.	2.0	20
28	Simple-to-Operate Approach for Single Cell Analysis Using a Hydrophobic Surface and Nanosized Droplets. Analytical Chemistry, 2021, 93, 4584-4592.	6.5	16
29	A 3D-printed microfluidic platform for simulating the effects of CPAP on the nasal epithelium. Biofabrication, 2021, 13, 035028.	7.1	11
30	Intracellular Delivery: A Comprehensive Review on Intracellular Delivery (Adv. Mater. 13/2021). Advanced Materials, 2021, 33, 2170103.	21.0	1
31	The effects of baffle configuration and number on inertial mixing in a curved serpentine micromixer: Experimental and numerical study. Chemical Engineering Research and Design, 2021, 168, 490-498.	5.6	21
32	A microfluidic approach to rapid sperm recovery from heterogeneous cell suspensions. Scientific Reports, 2021, 11, 7917.	3.3	30
33	Enhancing osteoregenerative potential of biphasic calcium phosphates by using bioinspired ZIF8 coating. Materials Science and Engineering C, 2021, 123, 111972.	7.3	11
34	Isolation of Circulating Tumour Cells in Patients With Glioblastoma Using Spiral Microfluidic Technology – A Pilot Study. Frontiers in Oncology, 2021, 11, 681130.	2.8	15
35	Improving capture efficiency of human cancer cell derived exosomes with nanostructured metal organic framework functionalized beads. Applied Materials Today, 2021, 23, 100994.	4.3	8
36	Machine learning reveals mesenchymal breast carcinoma cell adaptation in response to matrix stiffness. PLoS Computational Biology, 2021, 17, e1009193.	3.2	10

#	Article	IF	Citations
37	Emerging Insights into Keratin 16 Expression during Metastatic Progression of Breast Cancer. Cancers, 2021, 13, 3869.	3.7	14
38	Abstract 584: Circulating tumor cells as prognostic biomarkers in glioblastoma., 2021,,.		0
39	An easy-to-operate method for single-cell isolation and retrieval using a microfluidic static droplet array. Mikrochimica Acta, 2021, 188, 242.	5.0	13
40	An Efficient Graphene Quantum Dots-Based Electrochemical Cytosensor for the Sensitive Recognition of CD123 in Acute Myeloid Leukemia Cells. IEEE Sensors Journal, 2021, 21, 16451-16463.	4.7	12
41	The role of vitamin D in the age of COVIDâ€19: A systematic review and metaâ€analysis. International Journal of Clinical Practice, 2021, 75, e14675.	1.7	68
42	Effects of sample rheology on the equilibrium position of particles and cells within a spiral microfluidic channel. Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	8
43	The Pandora's box of novel technologies that may revolutionize lung cancer. Lung Cancer, 2021, 159, 34-41.	2.0	12
44	The Effects of COVID-19 on the Placenta During Pregnancy. Frontiers in Immunology, 2021, 12, 743022.	4.8	39
45	COVID-19 spread in a classroom equipped with partition– A CFD approach. Journal of Hazardous Materials, 2021, 420, 126587.	12.4	91
46	Biocatalytic micromixer coated with enzyme-MOF thin film for CO2 conversion to formic acid. Chemical Engineering Journal, 2021, 426, 130856.	12.7	34
47	Point of Care Diagnostics in the Age of COVID-19. Diagnostics, 2021, 11, 9.	2.6	54
48	Pirfenidone Reduces Epithelial–Mesenchymal Transition and Spheroid Formation in Breast Carcinoma through Targeting Cancer-Associated Fibroblasts (CAFs). Cancers, 2021, 13, 5118.	3.7	12
49	Affibody Functionalized Beads for the Highly Sensitive Detection of Cancer Cell-Derived Exosomes. International Journal of Molecular Sciences, 2021, 22, 12014.	4.1	5
50	Advanced bioengineering of male germ stem cells to preserve fertility. Journal of Tissue Engineering, 2021, 12, 204173142110605.	5.5	4
51	Recent Advances in Chronotherapy Targeting Respiratory Diseases. Pharmaceutics, 2021, 13, 2008.	4.5	16
52	Numerical and Experimental Study of Cross-Sectional Effects on the Mixing Performance of the Spiral Microfluidics. Micromachines, 2021, 12, 1470.	2.9	10
53	Bioreactor-Based Adherent Cells Harvesting from Microcarriers with 3D Printed Inertial Microfluidics. Methods in Molecular Biology, 2021, , 257-266.	0.9	1
54	A miniaturized piezoresistive flow sensor for realâ€time monitoring of intravenous infusion. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 568-576.	3.4	41

#	Article	IF	CITATIONS
55	Promoted chondrogenesis of hMCSs with controlled release of TGF-Î ² 3 via microfluidics synthesized alginate nanogels. Carbohydrate Polymers, 2020, 229, 115551.	10.2	53
56	Rapid and Label-Free Isolation of Tumour Cells from the Urine of Patients with Localised Prostate Cancer Using Inertial Microfluidics. Cancers, 2020, 12, 81.	3.7	52
57	PCR-free paper-based nanobiosensing platform for visual detection of telomerase activity via gold enhancement. Microchemical Journal, 2020, 154, 104594.	4.5	10
58	Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Critical Reviews in Biotechnology, 2020, 40, 213-230.	9.0	108
59	Application of level-set method in simulation of normal and cancer cells deformability within a microfluidic device. Journal of Biomechanics, 2020, 112, 110066.	2.1	6
60	Obstacle-free planar hybrid micromixer with lowÂpressure drop. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	21
61	Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistry. Chemosphere, 2020, 249, 126079.	8.2	40
62	Ex vivo culture of circulating tumour cells derived from non-small cell lung cancer. Translational Lung Cancer Research, 2020, 9, 1795-1809.	2.8	24
63	Particle movement and fluid behavior visualization using an optically transparent 3D-printed micro-hydrocyclone. Biomicrofluidics, 2020, 14, 064106.	2.4	8
64	The evolving landscape of predictive biomarkers in immunoâ€oncology with a focus on spatial technologies. Clinical and Translational Immunology, 2020, 9, e1215.	3.8	23
65	High-Plex and High-Throughput Digital Spatial Profiling of Non-Small-Cell Lung Cancer (NSCLC). Cancers, 2020, 12, 3551.	3.7	26
66	Circulating tumor cell clusters: Insights into tumour dissemination and metastasis. Expert Review of Molecular Diagnostics, 2020, 20, 1139-1147.	3.1	18
67	<p>ZIF-8 Modified Polypropylene Membrane: A Biomimetic Cell Culture Platform with a View to the Improvement of Guided Bone Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 10029-10043.	6.7	26
68	Diagnostic value of serum HER2 levels in breast cancer: a systematic review and meta-analysis. BMC Cancer, 2020, 20, 1049.	2.6	19
69	Application of microfluidic technology in cancer research and therapy. Advances in Clinical Chemistry, 2020, 99, 193-235.	3.7	8
70	Metal–Organic Framework-Enhanced ELISA Platform for Ultrasensitive Detection of PD-L1. ACS Applied Bio Materials, 2020, 3, 4148-4158.	4.6	26
71	Mussel inspired ZIF8 microcarriers: a new approach for large-scale production of stem cells. RSC Advances, 2020, 10, 20118-20128.	3.6	13
72	3D printing enables the rapid prototyping of modular microfluidic devices for particle conjugation. Applied Materials Today, 2020, 20, 100726.	4.3	38

#	Article	IF	CITATIONS
73	Pirfenidone reduces immune-suppressive capacity of cancer-associated fibroblasts through targeting CCL17 and TNF-beta. Integrative Biology (United Kingdom), 2020, 12, 188-197.	1.3	25
74	Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments. Biosensors and Bioelectronics, 2020, 155, 112113.	10.1	22
75	Fabrication of unconventional inertial microfluidic channels using wax 3D printing. Soft Matter, 2020, 16, 2448-2459.	2.7	42
76	Computational inertial microfluidics: a review. Lab on A Chip, 2020, 20, 1023-1048.	6.0	121
77	3D Printing of Inertial Microfluidic Devices. Scientific Reports, 2020, 10, 5929.	3.3	121
78	High-Throughput Particle Concentration Using Complex Cross-Section Microchannels. Micromachines, 2020, 11, 440.	2.9	22
79	Volume-preserving strategies to improve the mixing efficiency of serpentine micromixers. Journal of Micromechanics and Microengineering, 2020, 30, 115022 .	2.6	5
80	Background-free fibre optic Brillouin probe for remote mapping of micromechanics. Biomedical Optics Express, 2020, 11, 6687.	2.9	8
81	Culture of circulating tumour cells derived from non-small cell lung cancer Journal of Clinical Oncology, 2020, 38, e21692-e21692.	1.6	0
82	Upregulation of PD-L1 expression in breast cancer cells through the formation of 3D multicellular cancer aggregates under different chemical and mechanical conditions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118526.	4.1	39
83	Development of a Biomimetic Semicircular Canal With MEMS Sensors to Restore Balance. IEEE Sensors Journal, 2019, 19, 11675-11686.	4.7	26
84	Rapid Softlithography Using 3Dâ€Printed Molds. Advanced Materials Technologies, 2019, 4, 1900425.	5.8	51
85	Spermatogenesis induction of spermatogonial stem cells using nanofibrous poly(<scp> </scp> â€lactic) Tj ETQq1 12 2019, 30, 3011-3025.	1 0.784314 3.2	4 rgBT /O <mark>ve</mark> i 10
86	New insights into the physics of inertial microfluidics in curved microchannels. I. Relaxing the fixed inflection point assumption. Biomicrofluidics, 2019, 13, 034117.	2.4	20
87	New insights into the physics of inertial microfluidics in curved microchannels. II. Adding an additive rule to understand complex cross-sections. Biomicrofluidics, 2019, 13, 034118.	2.4	10
88	Circulating tumour cell RNA characterisation from colorectal cancer patient blood after inertial microfluidic enrichment. MethodsX, 2019, 6, 1512-1520.	1.6	9
89	IEEE Access Special Section Editorial: Wearable and Implantable Devices and Systems. IEEE Access, 2019, 7, 139512-139517.	4.2	0
90	Microfluidics: Rapid Softlithography Using 3Dâ€Printed Molds (Adv. Mater. Technol. 10/2019). Advanced Materials Technologies, 2019, 4, 1970056.	5.8	0

#	Article	IF	Citations
91	Back Cover: Biotechnology Journal 5/2019. Biotechnology Journal, 2019, 14, 1970054.	3.5	O
92	Inertial-based Microcarrier-cell retention in bioprocessing. Cytotherapy, 2019, 21, e4-e5.	0.7	0
93	Electrically conductive nanomaterials for cardiac tissue engineering. Advanced Drug Delivery Reviews, 2019, 144, 162-179.	13.7	137
94	Design and applications of MEMS flow sensors: A review. Sensors and Actuators A: Physical, 2019, 295, 483-502.	4.1	233
95	Experimental and numerical study of elasto-inertial focusing in straight channels. Biomicrofluidics, 2019, 13, 034103.	2.4	39
96	Rapid separation and identification of beer spoilage bacteria by inertial microfluidics and MALDI-TOF mass spectrometry. Lab on A Chip, 2019, 19, 1961-1970.	6.0	54
97	Phenotypic Characterization of Circulating Lung Cancer Cells for Clinically Actionable Targets. Cancers, 2019, 11, 380.	3.7	33
98	Modulating cancer cell mechanics and actin cytoskeleton structure by chemical and mechanical stimulations. Journal of Biomedical Materials Research - Part A, 2019, 107, 1569-1581.	4.0	25
99	Validation of a Vasculogenesis Microfluidic Model for Radiobiological Studies of the Human Microvasculature. Advanced Materials Technologies, 2019, 4, 1800726.	5.8	23
100	A simple coating method of PDMS microchip with PTFE for synthesis of dexamethasone-encapsulated PLGA nanoparticles. Drug Delivery and Translational Research, 2019, 9, 707-720.	5.8	17
101	Scaledâ€Up Inertial Microfluidics: Retention System for Microcarrierâ€Based Suspension Cultures. Biotechnology Journal, 2019, 14, e1800674.	3.5	13
102	A rapidly prototyped lung-on-a-chip model using 3D-printed molds. Organs-on-a-Chip, 2019, 1, 100001.	3.2	58
103	Microfluidics for Porous Systems: Fabrication, Microscopy and Applications. Transport in Porous Media, 2019, 130, 277-304.	2.6	43
104	Simulating Inflammation in a Wound Microenvironment Using a Dermal Woundâ€onâ€a hip Model. Advanced Healthcare Materials, 2019, 8, e1801307.	7.6	46
105	A Reappraisal of Circulating Fetal Cell Noninvasive Prenatal Testing. Trends in Biotechnology, 2019, 37, 632-644.	9.3	21
106	The Isolation and Characterization of Circulating Tumor Cells from Head and Neck Cancer Patient Blood Samples Using Spiral Microfluidic Technology. Methods in Molecular Biology, 2019, 2054, 129-136.	0.9	4
107	Incorporation of Nanoalumina Improves Mechanical Properties and Osteogenesis of Hydroxyapatite Bioceramics. ACS Biomaterials Science and Engineering, 2018, 4, 1324-1336.	5.2	26
108	Inertial particle focusing dynamics in a trapezoidal straight microchannel: application to particle filtration. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	39

#	Article	IF	CITATIONS
109	Microfluidics for Fast and Frugal Diagnosis of Malaria, Sepsis, and HIV/AIDS., 2018,, 57-75.		1
110	Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sensors and Actuators B: Chemical, 2018, 263, 151-176.	7.8	175
111	High-throughput sorting of eggs for synchronization of <i>C. elegans </i> ii a microfluidic spiral chip. Lab on A Chip, 2018, 18, 679-687.	6.0	35
112	A Collective Route to Head and Neck Cancer Metastasis. Scientific Reports, 2018, 8, 746.	3.3	53
113	Selective separation of microalgae cells using inertial microfluidics. Bioresource Technology, 2018, 252, 91-99.	9.6	86
114	Mist harvesting using bioinspired polydopamine coating and microfabrication technology. Desalination, 2018, 429, 111-118.	8.2	80
115	Melanoma circulating tumor cells: Benefits and challenges required for clinical application. Cancer Letters, 2018, 424, 1-8.	7.2	38
116	Combined effects of 3D bone marrow stem cell-seeded wet-electrospun poly lactic acid scaffolds on full-thickness skin wound healing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 905-912.	3.4	22
117	A hybrid micromixer with planar mixing units. RSC Advances, 2018, 8, 33103-33120.	3.6	58
118	A Novel Microfluidic Device-Based Neurite Outgrowth Inhibition Assay Reveals the Neurite Outgrowth-Promoting Activity of Tropomyosin Tpm3.1 in Hippocampal Neurons. Cellular and Molecular Neurobiology, 2018, 38, 1557-1563.	3.3	7
119	MEMS piezoresistive flow sensors for sleep apnea therapy. Sensors and Actuators A: Physical, 2018, 279, 577-585.	4.1	25
120	Engineering biomimetic hair bundle sensors for underwater sensing applications. AIP Conference Proceedings, 2018, , .	0.4	7
121	Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring. Sensors, 2018, 18, 418.	3.8	65
122	Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials, 2018, 181, 333-346.	11.4	126
123	Transparent Surfaces Inspired by Nature. Advanced Optical Materials, 2018, 6, 1800091.	7.3	34
124	The Prognostic Role of Circulating Tumor Cells (CTCs) in Lung Cancer. Frontiers in Oncology, 2018, 8, 311.	2.8	94
125	Inertial-Based Filtration Method for Removal of Microcarriers from Mesenchymal Stem Cell Suspensions. Scientific Reports, 2018, 8, 12481.	3.3	26
126	The Use of Microfluidic Technology for Cancer Applications and Liquid Biopsy. Micromachines, 2018, 9, 397.	2.9	50

#	Article	IF	Citations
127	Isolation of Circulating Fetal Trophoblasts Using Inertial Microfluidics for Noninvasive Prenatal Testing. Advanced Materials Technologies, 2018, 3, 1800066.	5.8	32
128	Static droplet array for culturing single live adherent cells in an isolated chemical microenvironment. Lab on A Chip, 2018, 18, 2156-2166.	6.0	27
129	Abstract 5572: Circulating tumor cells: The tumor trail left in the blood. , 2018, , .		O
130	An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates. Biomicrofluidics, 2017, 11, 014108.	2.4	45
131	Enrichment of circulating head and neck tumour cells using spiral microfluidic technology. Scientific Reports, 2017, 7, 42517.	3.3	69
132	Manipulating electrokinetic conductance of nanofluidic channel by varying inlet pH of solution. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	15
133	Engineering miniaturized hair cell sensors for auditory system., 2017,,.		1
134	Strategically Designing a Pumpless Microfluidic Device on an "Inert―Polypropylene Substrate with Potential Application in Biosensing and Diagnostics. Langmuir, 2017, 33, 5565-5576.	3.5	31
135	Acetylated bovine serum albumin differentially inhibits polymerase chain reaction in microdevices. Biomicrofluidics, 2017, 11, 034110.	2.4	6
136	A 3D-printed mini-hydrocyclone for high throughput particle separation: application to primary harvesting of microalgae. Lab on A Chip, 2017, 17, 2459-2469.	6.0	63
137	Advancing Techniques and Insights in Circulating Tumor Cell (CTC) Research. Cancer Drug Discovery and Development, 2017, , 71-94.	0.4	2
138	Preparation of Iridescent 2D Photonic Crystals by Using a Mussel-Inspired Spatial Patterning of ZIF-8 with Potential Applications in Optical Switch and Chemical Sensor. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38076-38080.	8.0	47
139	Characterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing applications. AIP Advances, 2017, 7, .	1.3	74
140	Development of a fiber-based membraneless hydrogen peroxide fuel cell. RSC Advances, 2017, 7, 40755-40760.	3.6	20
141	Microfluidic Cell Retention Device for Perfusion of Mammalian Suspension Culture. Scientific Reports, 2017, 7, 6703.	3.3	66
142	Alkaline Surfactant Polymer Flooding: What Happens at the Pore Scale?., 2017,,.		12
143	PD-L1 expressing circulating tumour cells in head and neck cancers. BMC Cancer, 2017, 17, 333.	2.6	61
144	An Accurate PSO-GA Based Neural Network to Model Growth of Carbon Nanotubes. Journal of Nanomaterials, 2017, 2017, 1-6.	2.7	11

#	Article	IF	CITATIONS
145	Evaluation of Nanofiber PLA Scaffolds Using Dry-and Wet-Electro Spinning Methods. , 2017, , .		1
146	Coal-on-a-Chip: Visualizing Flow in Coal Fractures. Energy & Samp; Fuels, 2017, 31, 10393-10403.	5.1	27
147	Isolation and detection of circulating tumour cells from metastatic melanoma patients using a slanted spiral microfluidic device. Oncotarget, 2017, 8, 67355-67368.	1.8	45
148	A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 1534-1543.	4.0	30
149	Singleâ€cell profiling approaches to probing tumor heterogeneity. International Journal of Cancer, 2016, 139, 243-255.	5.1	52
150	Engineering a 3D microfluidic culture platform for tumor-treating field application. Scientific Reports, 2016, 6, 26584.	3.3	73
151	A microfluidic framework for studying relative permeability in coal. International Journal of Coal Geology, 2016, 159, 183-193.	5.0	70
152	Characterizing terahertz channels for monitoring human lungs with wireless nanosensor networks. Nano Communication Networks, 2016, 9, 43-57.	2.9	13
153	Numerical and experimental study of capillary-driven flow of PCR solution in hybrid hydrophobic microfluidic networks. Biomedical Microdevices, 2016, 18, 68.	2.8	8
154	From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance. Scientific Reports, 2016, 6, 32955.	3.3	117
155	A rapid co-culture stamping device for studying intercellular communication. Scientific Reports, 2016, 6, 35618.	3.3	12
156	Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation. Lab on A Chip, 2016, 16, 2791-2802.	6.0	135
157	Microfluidics for research and applications in oncology. Analyst, The, 2016, 141, 504-524.	3.5	54
158	Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nature Protocols, 2016, 11, 134-148.	12.0	439
159	Advances in microfluidics in combating infectious diseases. Biotechnology Advances, 2016, 34, 404-421.	11.7	79
160	Fundamentals and applications of inertial microfluidics: a review. Lab on A Chip, 2016, 16, 10-34.	6.0	737
161	Short term <i>ex-vivo</i> expansion of circulating head and neck tumour cells. Oncotarget, 2016, 7, 60101-60109.	1.8	48
162	Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena. Journal of the Royal Society Interface, 2015, 12, 20150322.	3.4	113

#	Article	IF	CITATIONS
163	Thermoset polyester-based superhydrophobic microchannels for nanofluid heat transfer applications. Proceedings of SPIE, 2015, , .	0.8	О
164	Reliability analysis of time-varying wireless nanoscale sensor networks. , 2015, , .		7
165	Membrane-less microfiltration using inertial microfluidics. Scientific Reports, 2015, 5, 11018.	3.3	126
166	Large-Volume Microfluidic Cell Sorting for Biomedical Applications. Annual Review of Biomedical Engineering, 2015, 17, 1-34.	12.3	96
167	Investigation of membrane fouling at the microscale using isopore filters. Microfluidics and Nanofluidics, 2015, 19, 307-315.	2.2	14
168	Flow-induced stress on adherent cells in microfluidic devices. Lab on A Chip, 2015, 15, 4114-4127.	6.0	111
169	Malaria detection using inertial microfluidics. Lab on A Chip, 2015, 15, 1101-1109.	6.0	108
170	Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosensors and Bioelectronics, 2015, 66, 19-23.	10.1	81
171	Short-term expansion of breast circulating cancer cells predicts response to anti-cancer therapy. Oncotarget, 2015, 6, 15578-15593.	1.8	134
172	Design and Analysis of a Wireless Nanosensor Network for Monitoring Human Lung Cells., 2015,,.		14
173	Clinical Validation of an Ultra High-Throughput Spiral Microfluidics for the Detection and Enrichment of Viable Circulating Tumor Cells. PLoS ONE, 2014, 9, e99409.	2.5	165
174	Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab on A Chip, 2014, 14, 128-137.	6.0	485
175	An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst, The, 2014, 139, 3245-3255.	3.5	173
176	Isoporous Micro/Nanoengineered Membranes. ACS Nano, 2013, 7, 1882-1904.	14.6	140
177	Isolation and retrieval of circulating tumor cells using centrifugal forces. Scientific Reports, 2013, 3, 1259.	3.3	618
178	A high-flux isopore micro-fabricated membrane for effective concentration and recovering of waterborne pathogens. Biomedical Microdevices, 2012, 14, 669-677.	2.8	29
179	Capturing and recovering of Cryptosporidium parvum oocysts with polymeric micro-fabricated filter. Journal of Membrane Science, 2011, 369, 560-568.	8.2	22
180	Fabrication of multi-layer polymeric micro-sieve having narrow slot pores with conventional ultraviolet-lithography and micro-fabrication techniques. Biomicrofluidics, 2011, 5, 36504-365049.	2.4	27

#	ARTICLE	IF	CITATIONS
181	Fabrication and characterization of a microporous polymeric micro-filter for isolation of Cryptosporidium parvumoocysts. Journal of Micromechanics and Microengineering, 2011, 21, 035002.	2.6	18
182	Polymeric micro-filter manufactured by a dissolving mold technique. Journal of Micromechanics and Microengineering, 2010, 20, 075005.	2.6	16
183	Surface Modification of Micro/Nano-Fabricated Filters. Key Engineering Materials, 0, 508, 87-98.	0.4	2
184	Application of circulating tumour cells to predict response to treatment in head and neck cancer. Cellular Oncology (Dordrecht), 0, , .	4.4	5