Dmitry Guschin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4398953/publications.pdf

Version: 2024-02-01

37 8,371 30 36
papers citations h-index g-index

38 38 38 8757
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nature Medicine, 2019, 25, 1131-1142.	30.7	139
2	Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins. Viruses, 2017, 9, 271.	3.3	39
3	Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nature Methods, 2015, 12, 465-471.	19.0	91
4	Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma. Molecular Therapy, 2015, 23, 1380-1390.	8.2	88
5	Targeted Correction and Restored Function of the CFTR Gene in Cystic Fibrosis Induced Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 569-577.	4.8	168
6	Translating dosage compensation to trisomy 21. Nature, 2013, 500, 296-300.	27.8	282
7	A Designed Zinc-finger Transcriptional Repressor of Phospholamban Improves Function of the Failing Heart. Molecular Therapy, 2012, 20, 1508-1515.	8.2	18
8	Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations. Cell, 2011, 146, 318-331.	28.9	703
9	Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations. Cell, 2011, 146, 659.	28.9	3
10	Efficient targeted gene disruption in the soma and germ line of the frog <i>Xenopus tropicalis</i> using engineered zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7052-7057.	7.1	135
11	Generation of a tripleâ€gene knockout mammalian cell line using engineered zincâ€finger nucleases. Biotechnology and Bioengineering, 2010, 106, 97-105.	3.3	90
12	An Engineered Zinc Finger Protein Activator of the Endogenous Glial Cell Line-Derived Neurotrophic Factor Gene Provides Functional Neuroprotection in a Rat Model of Parkinson's Disease. Journal of Neuroscience, 2010, 30, 16469-16474.	3.6	61
13	A Rapid and General Assay for Monitoring Endogenous Gene Modification. Methods in Molecular Biology, 2010, 649, 247-256.	0.9	453
14	Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5809-5814.	7.1	347
15	Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology, 2008, 26, 808-816.	17.5	916
16	Human Interleukin-10 Gene Transfer Is Protective in a Rat Model of Parkinson's Disease. Molecular Therapy, 2008, 16, 1392-1399.	8.2	75
17	Gene Transfer of An Engineered Zinc Finger Protein Enhances the Anti-angiogenic Defense System. Molecular Therapy, 2007, 15, 1917-1923.	8.2	17
18	An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology, 2007, 25, 778-785.	17.5	967

#	Article	IF	Citations
19	787. Engineered Fok I Heterodimers for Enhanced Zinc Finger Nuclease Specificity. Molecular Therapy, 2006, 13, S305.	8.2	O
20	758. Towards Gene Knock out Therapy for AIDS/HIV: Targeted Disruption of CCR5 Using Engineered Zinc Finger Protein Nucleases (ZFNs). Molecular Therapy, 2006, 13, S293.	8.2	1
21	Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11997-12002.	7.1	142
22	Multiple ISWI ATPase Complexes from Xenopus laevis. Journal of Biological Chemistry, 2000, 275, 35248-35255.	3.4	67
23	Review: Chromatin Structural Features and Targets That Regulate Transcription. Journal of Structural Biology, 2000, 129, 102-122.	2.8	323
24	Active Remodeling of Somatic Nuclei in Egg Cytoplasm by the Nucleosomal ATPase ISWI. Science, 2000, 289, 2360-2362.	12.6	211
25	ATP-Dependent Histone Octamer Mobilization and Histone Deacetylation Mediated by the Mi-2 Chromatin Remodeling Complex. Biochemistry, 2000, 39, 5238-5245.	2.5	79
26	Transcriptional control: SWItched-on mobility. Current Biology, 1999, 9, R742-R746.	3.9	20
27	The Methyl-CpG Binding Transcriptional Repressor MeCP2 Stably Associates with Nucleosomal DNA. Biochemistry, 1999, 38, 7008-7018.	2.5	172
28	Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. EMBO Journal, 1998, 17, 520-534.	7.8	152
29	Asymmetric Linker Histone Association Directs the Asymmetric Rearrangement of Core Histone Interactions in a Positioned Nucleosome Containing a Thyroid Hormone Response Elementâ€. Biochemistry, 1998, 37, 8629-8636.	2.5	29
30	A JAK1/JAK2 Chimera Can Sustain Alpha and Gamma Interferon Responses. Molecular and Cellular Biology, 1997, 17, 695-706.	2.3	195
31	Manual Manufacturing of Oligonucleotide, DNA, and Protein Microchips. Analytical Biochemistry, 1997, 250, 203-211.	2.4	266
32	DNA analysis and diagnostics on oligonucleotide microchips Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4913-4918.	7.1	374
33	Interleukin-7 can induce the activation of Jak 1, Jak 3 and STAT 5 proteins in murine T cells. European Journal of Immunology, 1995, 25, 3041-3046.	2.9	116
34	Signal Transduction: Just another signalling pathway. Current Biology, 1994, 4, 1033-1035.	3.9	54
35	The protein tyrosine kinase JAK1 complements defects in interferon- $\hat{l}\pm/\hat{l}^2$ and $-\hat{l}^3$ signal transduction. Nature, 1993, 366, 129-135.	27.8	785
36	Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-& gamma; signal transduction pathway. Nature, 1993, 366, 166-170.	27.8	532

#	Article	IF	CITATIONS
37	Change in the pattern of histone binding to DNA upon transcriptional activation. Cell, 1989, 58, 27-36.	28.9	261