
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4398818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review on Highâ€Loading and Highâ€Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1700260.	19.5	1,307
2	Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Letters, 2016, 16, 519-527.	9.1	1,294
3	Dendriteâ€Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries. Advanced Materials, 2016, 28, 2888-2895.	21.0	877
4	Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium–Sulfur Batteries. ACS Nano, 2015, 9, 3002-3011.	14.6	723
5	An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proceedings of the United States of America, 2017, 114, 11069-11074.	7.1	710
6	Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries. Small, 2016, 12, 3283-3291.	10.0	661
7	Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy and Environmental Science, 2014, 7, 347-353.	30.8	624
8	Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nature Communications, 2014, 5, 3410.	12.8	602
9	Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Advanced Materials, 2016, 28, 2155-2162.	21.0	591
10	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	38.1	572
11	Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 12990-12995.	13.8	560
12	Nitrogenâ€Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on Bifunctional Natural Catalysts and Their Applications as Scaffolds for Highâ€Rate Lithiumâ€Sulfur Batteries. Advanced Materials, 2014, 26, 6100-6105.	21.0	534
13	Understanding trends in electrochemical carbon dioxide reduction rates. Nature Communications, 2017, 8, 15438.	12.8	527
14	A Cooperative Interface for Highly Efficient Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9551-9558.	21.0	514
15	Conductive and Catalytic Tripleâ€Phase Interfaces Enabling Uniform Nucleation in Highâ€Rate Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1802768.	19.5	508
16	Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2014, 24, 2772-2781.	14.9	495
17	Hierarchical Freeâ€Standing Carbonâ€Nanotube Paper Electrodes with Ultrahigh Sulfur‣oading for Lithium–Sulfur Batteries. Advanced Functional Materials, 2014, 24, 6105-6112.	14.9	476
18	Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries. CheM, 2017, 2, 258-270.	11.7	474

#	Article	IF	CITATIONS
19	Artificial Soft–Rigid Protective Layer for Dendriteâ€Free Lithium Metal Anode. Advanced Functional Materials, 2018, 28, 1705838.	14.9	470
20	Lithium Bond Chemistry in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2017, 56, 8178-8182.	13.8	439
21	Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angewandte Chemie - International Edition, 2020, 59, 12636-12652.	13.8	425
22	pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nature Communications, 2019, 10, 32.	12.8	371
23	Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy, 2014, 4, 65-72.	16.0	366
24	Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfurâ€Containing Guest for Highly Stable Lithiumâ€Sulfur Batteries: Mechanistic Insight into Capacity Degradation. Advanced Materials Interfaces, 2014, 1, 1400227.	3.7	351
25	A Review of Functional Binders in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802107.	19.5	324
26	Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary‣ayered Separator to Retard the Shuttle of Polysulfides for Lithium–Sulfur Batteries. Small, 2016, 12, 381-389.	10.0	315
27	Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1903813.	21.0	310
28	Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium–Sulfur Batteries. ACS Nano, 2015, 9, 6373-6382.	14.6	297
29	Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angewandte Chemie - International Edition, 2019, 58, 3779-3783.	13.8	296
30	Janus Separator of Polypropylene‣upported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries. Advanced Science, 2016, 3, 1500268.	11.2	294
31	A Bifunctional Perovskite Promoter for Polysulfide Regulation toward Stable Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, 1705219.	21.0	276
32	An Analogous Periodic Law for Strong Anchoring of Polysulfides on Polar Hosts in Lithium Sulfur Batteries: S- or Li-Binding on First-Row Transition-Metal Sulfides?. ACS Energy Letters, 2017, 2, 795-801.	17.4	264
33	Expediting redox kinetics of sulfur species by atomicâ€scale electrocatalysts in lithium–sulfur batteries. InformaÄnÃ-Materiály, 2019, 1, 533-541.	17.3	261
34	Heterogeneous/Homogeneous Mediators for Highâ€Energyâ€Density Lithium–Sulfur Batteries: Progress and Prospects. Advanced Functional Materials, 2018, 28, 1707536.	14.9	251
35	Li 2 S 5 -based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Materials, 2016, 3, 77-84.	18.0	236
36	A Toolbox for Lithium–Sulfur Battery Research: Methods and Protocols. Small Methods, 2017, 1, 1700134.	8.6	230

#	Article	IF	CITATIONS
37	Designing Host Materials for Sulfur Cathodes: From Physical Confinement to Surface Chemistry. Angewandte Chemie - International Edition, 2015, 54, 11018-11020.	13.8	222
38	3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for Highâ€Sulfurâ€Loading Lithium–Sulfur Batteries. Advanced Functional Materials, 2016, 26, 6351-6358.	14.9	216
39	Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. Energy Storage Materials, 2018, 10, 199-205.	18.0	215
40	Porphyrinâ€Derived Grapheneâ€Based Nanosheets Enabling Strong Polysulfide Chemisorption and Rapid Kinetics in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800849.	19.5	211
41	A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1, 38-50.	14.9	208
42	lon–Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode. Angewandte Chemie - International Edition, 2018, 57, 734-737.	13.8	208
43	Columnar Lithium Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 14207-14211.	13.8	199
44	Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control. Journal of the American Chemical Society, 2017, 139, 8458-8466.	13.7	198
45	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1, .	10.7	186
46	Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries. Energy Storage Materials, 2017, 7, 56-63.	18.0	172
47	Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Materials, 2017, 8, 194-201.	18.0	171
48	The Radical Pathway Based on a Lithiumâ€Metalâ€Compatible Highâ€Dielectric Electrolyte for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2018, 57, 16732-16736.	13.8	170
49	Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy, 2015, 11, 746-755.	16.0	168
50	Catalytic Self-Limited Assembly at Hard Templates: A Mesoscale Approach to Graphene Nanoshells for Lithium–Sulfur Batteries. ACS Nano, 2014, 8, 11280-11289.	14.6	166
51	Electrochemical Phase Evolution of Metalâ€Based Preâ€Catalysts for Highâ€Rate Polysulfide Conversion. Angewandte Chemie - International Edition, 2020, 59, 9011-9017.	13.8	164
52	Dendriteâ€Free Nanostructured Anode: Entrapment of Lithium in a 3D Fibrous Matrix for Ultraâ€6table Lithium–Sulfur Batteries. Small, 2014, 10, 4257-4263.	10.0	154
53	Porphyrin Organic Framework Hollow Spheres and Their Applications in Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1707483.	21.0	145
54	Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries. Green Chemistry, 2016, 18, 5169-5179.	9.0	140

#	Article	IF	CITATIONS
55	Polysulfide Electrocatalysis on Framework Porphyrin in High-Capacity and High-Stable Lithium–Sulfur Batteries. CCS Chemistry, 0, , 128-137.	7.8	131
56	Sandwichâ€ i ike Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 12129-12138.	13.8	130
57	Sulfur Redox Reactions at Working Interfaces in Lithium–Sulfur Batteries: A Perspective. Advanced Materials Interfaces, 2019, 6, 1802046.	3.7	128
58	A Quinonoidâ€Imineâ€Enriched Nanostructured Polymer Mediator for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1606802.	21.0	127
59	Polysulfide shuttle control: Towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. Journal of Power Sources, 2014, 253, 263-268.	7.8	124
60	3D Mesoporous Graphene: CVD Self-Assembly on Porous Oxide Templates and Applications in High-Stable Li-S Batteries. Small, 2015, 11, 5243-5252.	10.0	120
61	Ion-Solvent Chemistry-Inspired Cation-Additive Strategy to Stabilize Electrolytes for Sodium-Metal Batteries. CheM, 2020, 6, 2242-2256.	11.7	116
62	Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 13184-13189.	2.0	115
63	New insights into "dead lithium―during stripping in lithium metal batteries. Journal of Energy Chemistry, 2021, 62, 289-294.	12.9	115
64	Hierarchical Vineâ€Treeâ€Like Carbon Nanotube Architectures: Inâ€Situ CVD Selfâ€Assembly and Their Use as Robust Scaffolds for Lithiumâ€Sulfur Batteries. Advanced Materials, 2014, 26, 7051-7058.	21.0	104
65	Current-density dependence of Li ₂ S/Li ₂ S ₂ growth in lithium–sulfur batteries. Energy and Environmental Science, 2019, 12, 2976-2982.	30.8	102
66	Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. New Carbon Materials, 2016, 31, 352-362.	6.1	100
67	Dictating High apacity Lithium–Sulfur Batteries through Redoxâ€Mediated Lithium Sulfide Growth. Small Methods, 2020, 4, 1900344.	8.6	99
68	The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium-sulfur batteries. 2D Materials, 2015, 2, 014011.	4.4	94
69	Review of nanostructured current collectors in lithium–sulfur batteries. Nano Research, 2017, 10, 4027-4054.	10.4	91
70	Three-dimensional aluminum foam/carbon nanotube scaffolds as long- and short-range electron pathways with improved sulfur loading for high energy density lithium–sulfur batteries. Journal of Power Sources, 2014, 261, 264-270.	7.8	86
71	Beaver-dam-like membrane: A robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li-S batteries. Energy Storage Materials, 2017, 8, 153-160.	18.0	86
72	Lithium Bond Chemistry in Lithium–Sulfur Batteries. Angewandte Chemie, 2017, 129, 8290-8294.	2.0	85

#	Article	IF	CITATIONS
73	A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithium‧ulfur Batteries. Angewandte Chemie - International Edition, 2017, 56, 16223-16227.	13.8	85
74	Cathode materials based on carbon nanotubes for high-energy-density lithium–sulfur batteries. Carbon, 2014, 75, 161-168.	10.3	84
75	Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 10869-10875.	10.3	83
76	From electricity to fuels: Descriptors for C1 selectivity in electrochemical CO2 reduction. Applied Catalysis B: Environmental, 2020, 279, 119384.	20.2	81
77	Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium–sulfur batteries. Carbon, 2015, 92, 96-105.	10.3	77
78	A Selfâ€Limited Freeâ€Standing Sulfide Electrolyte Thin Film for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2101985.	14.9	77
79	Sodiophilicity/potassiophilicity chemistry in sodium/potassium metal anodes. Journal of Energy Chemistry, 2020, 51, 1-6.	12.9	69
80	A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes. Journal of Energy Chemistry, 2020, 48, 203-207.	12.9	68
81	Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	68
82	Towards Stable Lithium–Sulfur Batteries with a Low Selfâ€Discharge Rate: Ion Diffusion Modulation and Anode Protection. ChemSusChem, 2015, 8, 2892-2901.	6.8	66
83	Lithiumâ€5ulfur Batteries: Dendriteâ€Free Nanostructured Anode: Entrapment of Lithium in a 3D Fibrous Matrix for Ultraâ€5table Lithium–Sulfur Batteries (Small 21/2014). Small, 2014, 10, 4222-4222.	10.0	62
84	The role of atomic carbon in directing electrochemical CO ₍₂₎ reduction to multicarbon products. Energy and Environmental Science, 2021, 14, 473-482.	30.8	62
85	From Supramolecular Species to Selfâ€Templated Porous Carbon and Metalâ€Doped Carbon for Oxygen Reduction Reaction Catalysts. Angewandte Chemie - International Edition, 2019, 58, 4963-4967.	13.8	59
86	Hierarchical Carbon Nanotube/Carbon Black Scaffolds as Short- and Long-Range Electron Pathways with Superior Li-Ion Storage Performance. ACS Sustainable Chemistry and Engineering, 2014, 2, 200-206.	6.7	58
87	The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium–sulfur batteries. Journal of Energy Chemistry, 2022, 64, 568-573.	12.9	56
88	Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products. Nature Communications, 2022, 13, 1399.	12.8	56
89	Direct Intermediate Regulation Enabled by Sulfur Containers in Working Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 22150-22155.	13.8	55
90	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semiâ€Immobilized Redox Mediators in Working Batteries. Angewandte Chemie - International Edition, 2020, 59, 17670-17675.	13.8	54

#	Article	IF	CITATIONS
91	Selective Permeable Lithiumâ€ion Channels on Lithium Metal for Practical Lithium–Sulfur Pouch Cells. Angewandte Chemie - International Edition, 2021, 60, 18031-18036.	13.8	52
92	Columnar Lithium Metal Anodes. Angewandte Chemie, 2017, 129, 14395-14399.	2.0	51
93	Iron (Fe, Ni, Co)-based transition metal compounds for lithium-sulfur batteries: Mechanism, progress and prospects. Journal of Energy Chemistry, 2022, 73, 513-532.	12.9	50
94	Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. Science Bulletin, 2017, 62, 1267-1274.	9.0	49
95	Nitrogen-doped herringbone carbon nanofibers with large lattice spacings and abundant edges: Catalytic growth and their applications in lithium ion batteries and oxygen reduction reactions. Catalysis Today, 2015, 249, 244-251.	4.4	48
96	Graphene-based Fe-coordinated framework porphyrin as an interlayer for lithium–sulfur batteries. Materials Chemistry Frontiers, 2019, 3, 615-619.	5.9	47
97	A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries. Journal of Energy Chemistry, 2022, 68, 548-555.	12.9	46
98	Lithium‣ulfur Batteries: Review on High‣oading and Highâ€Energy Lithium–Sulfur Batteries (Adv. Energy)	Tj <u>ETQ</u> q0 () Q ₁ gBT /Ove
99	Electrochemical Phase Evolution of Metalâ€Based Preâ€Catalysts for Highâ€Rate Polysulfide Conversion. Angewandte Chemie, 2020, 132, 9096-9102.	2.0	42
100	Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO. Chem Catalysis, 2021, 1, 663-680.	6.1	42
101	Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angewandte Chemie, 2019, 131, 3819-3823.	2.0	41
102	Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries. Journal of Energy Chemistry, 2013, 22, 341-346.	12.9	40
103	Carbon materials for traffic power battery. ETransportation, 2019, 2, 100033.	14.8	37
104	The Radical Pathway Based on a Lithiumâ€Metalâ€Compatible Highâ€Dielectric Electrolyte for Lithium–Sulfur Batteries. Angewandte Chemie, 2018, 130, 16974-16978.	2.0	36
105	Ion–Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode. Angewandte Chemie, 2018, 130, 742-745.	2.0	35
106	Lithium‣chwefelâ€Batterien mit Magerelektrolyt: Herausforderungen und Perspektiven. Angewandte Chemie, 2020, 132, 12736-12753.	2.0	33
107	Nonuniform Redistribution of Sulfur and Lithium upon Cycling: Probing the Origin of Capacity Fading in Lithium–Sulfur Pouch Cells. Energy Technology, 2019, 7, 1900111.	3.8	32
108	A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. Journal of Energy Chemistry, 2022, 64, 263-275.	12.9	28

#	Article	IF	CITATIONS
109	A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2021, 56, 391-394.	12.9	26
110	Solventâ€Engineered Scalable Production of Polysulfideâ€Blocking Shields to Enhance Practical Lithium–Sulfur Batteries. Small Methods, 2018, 2, 1800100.	8.6	23
111	Oxygen Coordination on Fe–N–C to Boost Oxygen Reduction Catalysis. Journal of Physical Chemistry Letters, 2021, 12, 517-524.	4.6	20
112	Machine Learning-Assisted Screening of Stepped Alloy Surfaces for C ₁ Catalysis. ACS Catalysis, 2022, 12, 4252-4260.	11.2	20
113	N-Methyl-2-pyrrolidone-assisted solvothermal synthesis of nanosize orthorhombic lithium iron phosphate with improved Li-storage performance. Journal of Materials Chemistry, 2012, 22, 18908.	6.7	19
114	A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithium ulfur Batteries. Angewandte Chemie, 2017, 129, 16441-16445.	2.0	19
115	Scalable Construction of Hollow Multishell Co ₃ O ₄ with Mitigated Interface Reconstruction for Efficient Lithium Storage. Advanced Materials Interfaces, 2020, 7, 2000667.	3.7	19
116	Exploring Trends on Coupling Mechanisms toward C ₃ Product Formation in CO ₍₂₎ R. Journal of Physical Chemistry C, 2021, 125, 26437-26447.	3.1	18
117	A Supramolecular Electrolyte for Lithiumâ€Metal Batteries. Batteries and Supercaps, 2020, 3, 47-51.	4.7	17
118	Controllable bulk growth of few-layer graphene/single-walled carbon nanotube hybrids containing Fe@C nanoparticles in a fluidized bed reactor. Carbon, 2014, 67, 554-563.	10.3	16
119	Guiding the Catalytic Properties of Copper for Electrochemical CO ₂ Reduction by Metal Atom Decoration. ACS Applied Materials & amp; Interfaces, 2021, 13, 52044-52054.	8.0	16
120	Review on nanomaterials for nextâ€generation batteries with lithium metal anodes. Nano Select, 2020, 1, 94-110.	3.7	14
121	Lithium Metal Anodes: Artificial Soft–Rigid Protective Layer for Dendriteâ€Free Lithium Metal Anode (Adv. Funct. Mater. 8/2018). Advanced Functional Materials, 2018, 28, 1870049.	14.9	12
122	Dynamics and Hysteresis of Hydrogen Intercalation and Deintercalation in Palladium Electrodes: A Multimodal <i>In Situ</i> X-ray Diffraction, Coulometry, and Computational Study. Chemistry of Materials, 2021, 33, 5872-5884.	6.7	11
123	Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithiumâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	2.0	10
124	Electrodes: Hierarchical Freeâ€Standing Carbonâ€Nanotube Paper Electrodes with Ultrahigh Sulfurâ€Loading for Lithium–Sulfur Batteries (Adv. Funct. Mater. 39/2014). Advanced Functional Materials, 2014, 24, 6244-6244.	14.9	9
125	Direct Intermediate Regulation Enabled by Sulfur Containers in Working Lithium–Sulfur Batteries. Angewandte Chemie, 2020, 132, 22334-22339.	2.0	9
126	From Supramolecular Species to Selfâ€Templated Porous Carbon and Metalâ€Doped Carbon for Oxygen Reduction Reaction Catalysts. Angewandte Chemie, 2019, 131, 5017-5021.	2.0	7

#	Article	IF	CITATIONS
127	Selective Permeable Lithiumâ€Ion Channels on Lithium Metal for Practical Lithium–Sulfur Pouch Cells. Angewandte Chemie, 2021, 133, 18179-18184.	2.0	6
128	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semiâ€Immobilized Redox Mediators in Working Batteries. Angewandte Chemie, 2020, 132, 17823-17828.	2.0	5
129	Carbon: Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithium-Sulfur Batteries (Adv. Funct. Mater.) Tj ETQq1 1 0.	7 843 14 rg	gBAT /Overloc
130	Lithium-Sulfur Batteries: Nitrogen-Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on Bifunctional Natural Catalysts and Their Applications as Scaffolds for High-Rate Lithium-Sulfur Batteries (Adv. Mater. 35/2014). Advanced Materials, 2014, 26, 6199-6199.	21.0	4
131	Porphyrin Organic Frameworks: Porphyrin Organic Framework Hollow Spheres and Their Applications in Lithium-Sulfur Batteries (Adv. Mater. 23/2018). Advanced Materials, 2018, 30, 1870160.	21.0	4
132	Lithium-Sulfur Batteries: Hierarchical Vine-Tree-Like Carbon Nanotube Architectures: In-Situ CVD Self-Assembly and Their Use as Robust Scaffolds for Lithium-Sulfur Batteries (Adv. Mater. 41/2014). Advanced Materials, 2014, 26, 6986-6986.	21.0	3
133	Lithium‣ulfur Batteries: A Cooperative Interface for Highly Efficient Lithium–Sulfur Batteries (Adv.) Tj ETQq1	1 0,78431 21.0	.4 ₃ rgBT /Ove
134	Sandwichâ€like Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie, 2020, 132, 12227-12236.	2.0	3
135	Frontispiece: Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, .	13.8	2
136	Catalysis research in rechargeable lithium-sulfur batteries. Chinese Science Bulletin, 2022, 67, 2906-2920.	0.7	2
137	Frontispiz: Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, .	2.0	1
138	Lithium Anodes: Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth (Adv. Mater. 11/2016). Advanced Materials, 2016, 28, 2090-2090.	21.0	1
139	Innentitelbild: Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal (Angew. Chem. 12/2019). Angewandte Chemie, 2019, 131, 3692-3692.	2.0	1
140	Rücktitelbild: Electrochemical Phase Evolution of Metalâ€Based Preâ€Catalysts for Highâ€Rate Polysulfide Conversion (Angew. Chem. 23/2020). Angewandte Chemie, 2020, 132, 9278-9278.	2.0	1
141	Batteries: Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfur ontaining Guest for Highly Stable Lithium‣ulfur Batteries: Mechanistic Insight into Capacity Degradation (Adv.) Tj ETQq1	1:0778432	l 40rgBT /Ove
142	Rücktitelbild: Columnar Lithium Metal Anodes (Angew. Chem. 45/2017). Angewandte Chemie, 2017, 129, 14508-14508.	2.0	0
143	Innenrücktitelbild: A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithiumâ€ S ulfur Batteries (Angew. Chem. 51/2017). Angewandte Chemie, 2017, 129, 16635-16635.	2.0	0
144	Innentitelbild: Ion–Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode (Angew. Chem. 3/2018). Angewandte Chemie, 2018, 130, 606-606.	2.0	0

Hong-Jie Peng	

#	Article	IF	CITATIONS
145	A Supramolecular Electrolyte for Lithiumâ€Metal Batteries. Batteries and Supercaps, 2020, 3, 5-5.	4.7	Ο