

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4398792/publications.pdf Version: 2024-02-01

LINC LI

#	Article	IF	CITATIONS
1	Multiphase media superwettability regulated by coexisting prewetting phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128505.	4.7	2
2	Superwetting interface for miscible liquid separation. Matter, 2022, 5, 1067-1069.	10.0	1
3	Beetle and cactus-inspired surface endows continuous and directional droplet jumping for efficient water harvesting. Journal of Materials Chemistry A, 2021, 9, 1507-1516.	10.3	79
4	Isolated heterotrophic nitrifying and aerobic denitrifying bacterium for treating actual refinery wastewater with low C/N ratio. Journal of Bioscience and Bioengineering, 2021, 132, 41-48.	2.2	13
5	Simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae from a repeated-batch acclimation. Bioresource Technology, 2021, 341, 125818.	9.6	26
6	Descriptive data on simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae. Data in Brief, 2021, 39, 107519.	1.0	1
7	Unidirectional solute transfer using a Janus membrane. Journal of Membrane Science, 2020, 596, 117723.	8.2	15
8	Fine Switching between Underwater Superoleophilicity and Underwater Superoleophobicity while Maintaining Superhydrophobicity. Langmuir, 2020, 36, 3300-3307.	3.5	4
9	Robust Superhydrophobic Membrane for Solving Water-Accelerated Fatigue of ZDDP-Containing Lubricating Oils. Langmuir, 2020, 36, 8560-8569.	3.5	15
10	Water deteriorates lubricating oils: removal of water in lubricating oils using a robust superhydrophobic membrane. Nanoscale, 2020, 12, 11703-11710.	5.6	29
11	Controllable preparation of multiple superantiwetting surfaces: From dual to quadruple superlyophobicity. Chemical Engineering Journal, 2019, 369, 463-469.	12.7	24
12	An all superantiwetting surface in water–oil–air systems. Journal of Materials Chemistry A, 2019, 7, 6957-6962.	10.3	20
13	Anisotropic wetting properties of trapezoidal profile surfaces with hierarchical stripes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 170-178.	4.7	5
14	An all-water-based system for robust superhydrophobic surfaces. Journal of Colloid and Interface Science, 2018, 519, 130-136.	9.4	55
15	Polyaniline Nanofibers: Their Amphiphilicity and Uses for Pickering Emulsions and On-Demand Emulsion Separation. Langmuir, 2018, 34, 2841-2848.	3.5	27
16	Transparent slippery liquid-infused nanoparticulate coatings. Chemical Engineering Journal, 2018, 337, 462-470.	12.7	98
17	Underoil superhydrophilic surfaces: water adsorption in metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 1692-1699.	10.3	84
18	One-step fabrication of superhydrophobic surfaces with different adhesion via laser processing. Journal of Alloys and Compounds, 2018, 739, 489-498.	5.5	43

Jing Li

#	Article	IF	CITATIONS
19	Efficient Fog Harvesting Based on 1D Copper Wire Inspired by the Plant Pitaya. Langmuir, 2018, 34, 15259-15267.	3.5	42
20	Organic Media Superwettability: On-Demand Liquid Separation by Controlling Surface Chemistry. ACS Applied Materials & Interfaces, 2018, 10, 37634-37642.	8.0	30
21	pH-Responsive Superwetting Fabric for On-demand Oil-Water Separation. Chemistry Letters, 2018, 47, 923-926.	1.3	6
22	Dual superlyophobic surfaces with superhydrophobicity and underwater superoleophobicity. Journal of Materials Chemistry A, 2018, 6, 11682-11687.	10.3	56
23	Facile Fabrication of Superhydrophobic and Underwater Superoleophobic Coatings. ACS Applied Nano Materials, 2018, 1, 4894-4899.	5.0	28
24	Robust and self-repairing superamphiphobic coating from all-water-based spray. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 645-651.	4.7	33
25	Stable Superwetting Meshes for On-Demand Separation of Immiscible Oil/Water Mixtures and Emulsions. Langmuir, 2017, 33, 3702-3710.	3.5	82
26	Inorganic Adhesives for Robust Superwetting Surfaces. ACS Nano, 2017, 11, 1113-1119.	14.6	204
27	Inorganic adhesives for robust, self-healing, superhydrophobic surfaces. Journal of Materials Chemistry A, 2017, 5, 19297-19305.	10.3	128
28	Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling. Chemical Engineering Journal, 2017, 327, 849-854.	12.7	141
29	Bioinspired Interfacial Materials with Enhanced Drop Mobility: From Fundamentals to Multifunctional Applications. Small, 2016, 12, 1825-1839.	10.0	193
30	Electrochemical route to prepare polyaniline-coated meshes with controllable pore size for switchable emulsion separation. Chemical Engineering Journal, 2016, 304, 115-120.	12.7	74
31	High-efficiency water collection on biomimetic material with superwettable patterns. Chemical Communications, 2016, 52, 12415-12417.	4.1	82
32	Polyaniline coated membranes for effective separation of oil-in-water emulsions. Journal of Colloid and Interface Science, 2016, 467, 261-270.	9.4	91
33	A Tunable Superwetting Copper Film between Superhydrophobicity and Superhydrophilicity. Chemistry Letters, 2015, 44, 1527-1529.	1.3	1
34	Fabrication of functional superhydrophobic engineering materials via an extremely rapid and simple route. Chemical Communications, 2015, 51, 6493-6495.	4.1	31
35	Iron Impurities as the Active Sites for Peroxidase-like Catalytic Reaction on Graphene and Its Derivatives. ACS Applied Materials & Interfaces, 2015, 7, 15403-15413.	8.0	34
36	Significant advantages of low-oxygen graphene nanosheets. Journal of Materials Chemistry A, 2015, 3, 9738-9744.	10.3	14

Jing Li

#	Article	IF	CITATIONS
37	Stable underwater superoleophobic conductive polymer coated meshes for high-efficiency oil–water separation. RSC Advances, 2015, 5, 33077-33082.	3.6	44
38	Design and understanding of a high-performance gas sensing material based on copper oxide nanowires exfoliated from a copper mesh substrate. Journal of Materials Chemistry A, 2015, 3, 20477-20481.	10.3	30
39	Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chemical Communications, 2014, 50, 5586.	4.1	239
40	Graphene oxide–iron complex: synthesis, characterization and visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2013, 1, 644-650.	10.3	55
41	Methodology for Robust Superhydrophobic Fabrics and Sponges from In Situ Growth of Transition Metal/Metal Oxide Nanocrystals with Thiol Modification and Their Applications in Oil/Water Separation. ACS Applied Materials & Interfaces, 2013, 5, 1827-1839.	8.0	251
42	Conductive and transparent superhydrophobic films on various substrates by <i>in situ</i> deposition. Applied Physics Letters, 2013, 102, .	3.3	26
43	Thermo-responsive hollow silica microgels with controlled drug release properties. Colloids and Surfaces B: Biointerfaces, 2013, 111, 7-14.	5.0	32
44	Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. Journal of Materials Chemistry, 2012, 22, 9774.	6.7	231
45	Recent progress of double-structural and functional materials with special wettability. Journal of Materials Chemistry, 2012, 22, 799-815.	6.7	175
46	Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging. Applied Physics Letters, 2012, 101, .	3.3	143
47	Advances in the theory of superhydrophobic surfaces. Journal of Materials Chemistry, 2012, 22, 20112.	6.7	177
48	Inspired superhydrophobic surfaces by a double-metal-assisted chemical etching route. Materials Research Bulletin, 2012, 47, 1687-1692.	5.2	11
49	Photochemical removal of aniline in aqueous solutions: Switching from photocatalytic degradation to photo-enhanced polymerization recovery. Journal of Hazardous Materials, 2010, 175, 977-984.	12.4	55
50	Electrochemical preparation of TiO2/SiO2 composite film and its high activity toward the photoelectrocatalytic degradation of methyl orange. Journal of Applied Electrochemistry, 2009, 39, 1745-1753.	2.9	15
51	Highly photocatalytic activity of metallic hydroxide/titanium dioxide nanoparticles prepared via a modified wet precipitation process. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 282-287.	3.9	38
52	A novel route to synthesis of photoluminescent dye/polypyrrole nanoparticles: Effects of intermolecular energy transfer on nucleation and growth of polypyrrole. Synthetic Metals, 2008, 158, 396-399.	3.9	9
53	Correlation between One-Directional Helical Growth of Polyaniline and Its Optical Activity. Journal of Physical Chemistry C, 2007, 111, 8383-8388.	3.1	56
54	Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity. Chemical Communications, 2007. , 1163.	4.1	120

Jing Li

#	Article	IF	CITATIONS
55	Salt Effects on Crystallization of Titanate and the Tailoring of Its Nanostructures. Journal of Physical Chemistry C, 2007, 111, 16768-16773.	3.1	10
56	A New Strategy for the Synthesis of Polyaniline Nanostructures: From Nanofibers to Nanowires. Macromolecular Rapid Communications, 2007, 28, 740-745.	3.9	46
57	Antioxidant activity of polyaniline nanofibers. Chinese Chemical Letters, 2007, 18, 1005-1008.	9.0	37
58	A novel Fe(OH)3/TiO2 nanoparticles and its high photocatalytic activity. Chinese Chemical Letters, 2007, 18, 1261-1264.	9.0	6
59	Effects of dopants on percolation behaviors and gas sensing characteristics of polyaniline film. Electrochimica Acta, 2006, 52, 723-727.	5.2	24
60	Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer, 2006, 47, 7361-7367.	3.8	208