Min Zi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4398570/publications.pdf

Version: 2024-02-01

49	1,543	18	32
papers	citations	h-index	g-index
53	53	53	2884
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Substrate for the MyocardialÂInflammation–Heart Failure Hypothesis Identified Using NovelÂUSPIOÂMethodology. JACC: Cardiovascular Imaging, 2021, 14, 365-376.	5.3	20
2	PMCA4 inhibition does not affect cardiac remodelling following myocardial infarction, but may reduce susceptibility to arrhythmia. Scientific Reports, 2021, 11, 1518.	3.3	0
3	Intrinsic Electrical Remodeling Underlies Atrioventricular Block in Athletes. Circulation Research, 2021, 129, e1-e20.	4.5	23
4	BS35â€Pontin regulates cardiac remodelling by modulating the hippo pathway in cardiomyocytes. , 2021, , .		0
5	Signaling via the Interleukin-10 Receptor Attenuates Cardiac Hypertrophy in Mice During Pressure Overload, but not Isoproterenol Infusion. Frontiers in Pharmacology, 2020, 11, 559220.	3.5	15
6	Silencing miR-370-3p rescues funny current and sinus node function in heart failure. Scientific Reports, 2020, 10, 11279.	3.3	30
7	Cardiac mitochondrial function depends on BUD23 mediated ribosome programming. ELife, 2020, 9, .	6.0	10
8	Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. ELife, 2020, 9, .	6.0	14
9	Pharmacological inhibition of Hippo pathway, with the novel kinase inhibitor ⟨scp⟩XMUâ€MPâ€1,⟨ scp⟩ protects the heart against adverse effects during pressure overload. British Journal of Pharmacology, 2019, 176, 3956-3971.	5.4	67
10	89â€Heterozygous global deletion of Plasma Membrane Calcium Atpase 1 (PMCA1HT) may reduce cardiac remodelling after transverse aortic constriction in a murine model. , 2019, , .		0
11	Cardiac hypertrophy or failure? - A systematic evaluation of the transverse aortic constriction model in C57BL/6NTac and C57BL/6J substrains. Current Research in Physiology, 2019, 1, 1-10.	1.7	22
12	$84 \hat{a} \in \text{Micro RNA-411}$ induces cardiomyocyte regeneration by modulating the hippo signalling pathway. , 2018, , .		0
13	$88 \hat{a} \in$ The effects of genetic ablation of microtubule-associated protein 1s (MAP1S) in regulating autophagy in the heart. , 2018, , .		0
14	201MAP1S ablation impairs survival after MI and the hypertrophic response to pressure overload through mediating cardiac autophagy and apoptosis. Cardiovascular Research, 2018, 114, S53-S53.	3.8	0
15	102â€Pharmacological modulation of the hippo pathway protects against adverse cardiac remodelling. , 2018, , .		0
16	Pak2 promotes ERâ€dependent cardioprotection. FASEB Journal, 2018, 32, 287.1.	0.5	0
17	Stress-Activated Kinase Mitogen-Activated Kinase Kinase-7 Governs Epigenetics of Cardiac Repolarization for Arrhythmia Prevention. Circulation, 2017, 135, 683-699.	1.6	17
18	216 ldentifying a novel role for pmca1 (atp2b1) in heart rhythm instability. Heart, 2017, 103, A142.1-A142.	2.9	0

#	Article	IF	CITATIONS
19	Reduced expression of <scp>PMCA</scp> 1 is associated with increased blood pressure with age which is preceded by remodelling of resistance arteries. Aging Cell, 2017, 16, 1104-1113.	6.7	12
20	Metabolic stress-induced cardiomyopathy is caused by mitochondrial dysfunction due to attenuated Erk5 signaling. Nature Communications, 2017, 8, 494.	12.8	59
21	140â€Heterozygous deletion of pmca1 might serve a protective role in the heart following myocardial infarction. Heart, 2017, 103, A105-A106.	2.9	0
22	217â€Genetic ablation of microtubule-associated protein 1s (map1s) protects the heart from pathological hypertrophy via regulation of autophagy. Heart, 2017, 103, A142.2-A142.	2.9	0
23	Atrioventricular Node Dysfunction and Ion Channel Transcriptome in Pulmonary Hypertension. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	4.8	22
24	Circulating Histone Concentrations Differentially Affect the Predominance of Left or Right Ventricular Dysfunction in Critical Illness. Critical Care Medicine, 2016, 44, e278-e288.	0.9	37
25	The oxoglutarate receptor 1 (OXGR1) modulates pressure overload-induced cardiac hypertrophy in mice. Biochemical and Biophysical Research Communications, 2016, 479, 708-714.	2.1	20
26	The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy. Nature Communications, 2016, 7, 11074.	12.8	52
27	Smad3 Couples Pak1 With the Antihypertrophic Pathway Through the E3 Ubiquitin Ligase, Fbxo32. Hypertension, 2015, 66, 1176-1183.	2.7	20
28	YIA2â€PMCA1 Deletion Leads to Increased Blood Pressure and Cardiac Hypertrophy. Heart, 2014, 100, A123.1-A123.	2.9	0
29	The tumour suppressor Ras-association domain family protein 1A (RASSF1A) regulates TNF- $\hat{l}\pm$ signalling in cardiomyocytes. Cardiovascular Research, 2014, 103, 47-59.	3.8	10
30	The Mammalian Ste20-like Kinase 2 (Mst2) Modulates Stress-induced Cardiac Hypertrophy. Journal of Biological Chemistry, 2014, 289, 24275-24288.	3.4	26
31	177â€The Alpha-ketoglutarate Receptor GPR99 Regulates Pathological Cardiac Hypertrophy. Heart, 2014, 100, A100.1-A100.	2.9	1
32	Targeted deletion of ERK2 in cardiomyocytes attenuates hypertrophic response but provokes pathological stress induced cardiac dysfunction. Journal of Molecular and Cellular Cardiology, 2014, 72, 104-116.	1.9	34
33	Abstract 159: Ablation of the Hypertension Candidate Gene <i>ATP2B1</i> Leads To Deficient Calcium Cycling, Systolic Dysfunction and Heart Failure Following Pressure Overload. Circulation Research, 2014, 115, .	4.5	0
34	Abstract 13798: Ablation of the Hypertension Candidate Gene ATP2B1 Results in Increased Blood Pressure and Cardiac Hypertrophic Remodeling. Circulation, 2014, 130, .	1.6	0
35	A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biology, 2013, 14, R82.	9.6	403
36	A Novel Immunomodulator, FTY-720 Reverses Existing Cardiac Hypertrophy and Fibrosis From Pressure Overload by Targeting NFAT (Nuclear Factor of Activated T-cells) Signaling and Periostin. Circulation: Heart Failure, 2013, 6, 833-844.	3.9	57

#	Article	IF	CITATIONS
37	Abstract 109: Regulation of TNF- $\hat{l}\pm$ Signaling in Cardiomyocytes via a Novel Interaction Between TNF- $\hat{l}\pm$ Receptor and RASSF1A. Circulation Research, 2012, 111, .	4.5	0
38	Deprivation of MKK7 in cardiomyocytes provokes heart failure in mice when exposed to pressure overload. Journal of Molecular and Cellular Cardiology, 2011, 50, 702-711.	1.9	31
39	Pak1 as a Novel Therapeutic Target for Antihypertrophic Treatment in the Heart. Circulation, 2011, 124, 2702-2715.	1.6	106
40	Mitogen-activated Protein Kinase Kinase 4 Deficiency in Cardiomyocytes Causes Connexin 43 Reduction and Couples Hypertrophic Signals to Ventricular Arrhythmogenesis. Journal of Biological Chemistry, 2011, 286, 17821-17830.	3.4	11
41	Plasma Membrane Calcium Pump (PMCA4)-Neuronal Nitric-oxide Synthase Complex Regulates Cardiac Contractility through Modulation of a Compartmentalized Cyclic Nucleotide Microdomain. Journal of Biological Chemistry, 2011, 286, 41520-41529.	3.4	69
42	Targeted Deletion of the Extracellular Signal-Regulated Protein Kinase 5 Attenuates Hypertrophic Response and Promotes Pressure Overload–Induced Apoptosis in the Heart. Circulation Research, 2010, 106, 961-970.	4.5	75
43	Cardiac-Specific Deletion of <i>Mkk4</i> Reveals Its Role in Pathological Hypertrophic Remodeling but Not in Physiological Cardiac Growth. Circulation Research, 2009, 104, 905-914.	4.5	67
44	Tumor Suppressor Ras-Association Domain Family 1 Isoform A Is a Novel Regulator of Cardiac Hypertrophy. Circulation, 2009, 120, 607-616.	1.6	60
45	Ras-Association Factor 1A (RASSF1A) regulates pressure overload-induced hypertrophy in vivo. Journal of Molecular and Cellular Cardiology, 2008, 44, 755.	1.9	0
46	Neuronal Nitric Oxide Synthase Signaling in the Heart Is Regulated by the Sarcolemmal Calcium Pump 4b. Circulation, 2007, 115, 483-492.	1.6	99
47	The sarcolemmal calcium pump (PMCA4b) is involved in the development of pressure overload induced hypertrophy. Journal of Molecular and Cellular Cardiology, 2007, 42, S137.	1.9	1
48	The sarcolemmal calcium pump modulates \hat{l}^2 -adrenergic hypertrophic signalling. Journal of Molecular and Cellular Cardiology, 2006, 40, 1003-1004.	1.9	0
49	The effect of quinapril on functional status of elderly patients with diastolic heart failure. Cardiovascular Drugs and Therapy, 2003, 17, 133-139.	2.6	53