Jing Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4398338/publications.pdf

Version: 2024-02-01

79	15,656	35	76
papers	citations	h-index	g-index
80	80	80	43236
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multidimensional nanoscopic chiroptics. Nature Reviews Physics, 2022, 4, 113-124.	11.9	87
2	Flexible elemental thermoelectrics with ultra-high power density. Materials Today Energy, 2022, 25, 100964.	2.5	20
3	Fatty Acid-Based Coacervates as a Membrane-free Protocell Model. Bioconjugate Chemistry, 2022, 33, 444-451.	1.8	6
4	Upcycling Silicon Photovoltaic Waste into Thermoelectrics. Advanced Materials, 2022, 34, e2110518.	11.1	25
5	Designing good compatibility factor in segmented Bi0.5Sb1.5Te3 – GeTe thermoelectrics for high power conversion efficiency. Nano Energy, 2022, 96, 107147.	8.2	24
6	Integrating recyclable polymers into thermoelectric devices for green electronics. Journal of Materials Chemistry A, 2022, 10, 19787-19796.	5.2	21
7	Modulation of Spin Dynamics in 2D Transitionâ€Metal Dichalcogenide via Strainâ€Driven Symmetry Breaking. Advanced Science, 2022, , 2200816.	5.6	4
8	Upcycling Silicon Photovoltaic Waste into Thermoelectrics (Adv. Mater. 19/2022). Advanced Materials, 2022, 34, .	11.1	0
9	Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nature Electronics, 2022, 5, 489-496.	13.1	52
10	Gateâ€Tunable Polar Optical Phonon to Piezoelectric Scattering in Fewâ€Layer Bi∢sub>2O ₂ Se for Highâ€Performance Thermoelectrics. Advanced Materials, 2021, 33, e2004786.	11.1	48
11	Modification of thermal transport in few-layer MoS ₂ by atomic-level defect engineering. Nanoscale, 2021, 13, 11561-11567.	2.8	12
12	Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50, 10087-10115.	18.7	135
13	Electrochemically Exfoliated Platinum Dichalcogenide Atomic Layers for High-Performance Air-Stable Infrared Photodetectors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8518-8527.	4.0	23
14	Realizing zT Values of 2.0 in Cubic GeTe. ChemNanoMat, 2021, 7, 476-482.	1.5	35
15	Fractals via Generalized Jungck–S Iterative Scheme. Discrete Dynamics in Nature and Society, 2021, 2021, 1-12.	0.5	O
16	Tunable Doping of Rhenium and Vanadium into Transition Metal Dichalcogenides for Twoâ€Dimensional Electronics. Advanced Science, 2021, 8, e2004438.	5.6	66
17	Suspended MoS ₂ Photodetector Using Patterned Sapphire Substrate. Small, 2021, 17, e2100246.	5.2	24
18	Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice throughWigner crystallization*. Chinese Physics B, 2021, 30, 077104.	0.7	2

#	Article	IF	CITATIONS
19	Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor. Journal of Materials Chemistry A, 2021, 9, 23335-23344.	5.2	38
20	Lowâ€Symmetry PdSe ₂ for High Performance Thermoelectric Applications. Advanced Functional Materials, 2020, 30, 2004896.	7.8	49
21	Interfacial Oxygenâ€Driven Charge Localization and Plasmon Excitation in Unconventional Superconductors. Advanced Materials, 2020, 32, 2000153.	11.1	10
22	Memory Devices: MoS ₂ /Polymer Heterostructures Enabling Stable Resistive Switching and Multistate Randomness (Adv. Mater. 42/2020). Advanced Materials, 2020, 32, 2070317.	11.1	1
23	MoS ₂ /Polymer Heterostructures Enabling Stable Resistive Switching and Multistate Randomness. Advanced Materials, 2020, 32, e2002704.	11.1	23
24	Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 18880-18890.	5.2	61
25	Fieldâ€Effect Transistors: Lowâ€6ymmetry PdSe ₂ for High Performance Thermoelectric Applications (Adv. Funct. Mater. 52/2020). Advanced Functional Materials, 2020, 30, 2070347.	7.8	3
26	Topological polaritons and photonic magic angles in twisted \hat{l}_{\pm} -MoO3 bilayers. Nature, 2020, 582, 209-213.	13.7	413
27	Large enhancement of thermoelectric performance in MoS ₂ / <i>h -BN heterostructure due to vacancy-induced band hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13929-13936.</i>	3.3	34
28	Achieving high thermoelectric quality factor toward high figure of merit in GeTe. Materials Today Physics, 2020, 14, 100239.	2.9	61
29	Nitrogen-mediated aligned growth of hexagonal BN films for reliable high-performance InSe transistors. Journal of Materials Chemistry C, 2020, 8, 4421-4431.	2.7	5
30	High-performance monolayer MoS ₂ photodetector enabled by oxide stress liner using scalable chemical vapor growth method. Nanophotonics, 2020, 9, 1981-1991.	2.9	21
31	Enhanced photoresponse of highly air-stable palladium diselenide by thickness engineering. Nanophotonics, 2020, 9, 2467-2474.	2.9	10
32	Probing thermal transport across amorphous region embedded in a single crystalline silicon nanowire. Scientific Reports, 2020, 10, 821.	1.6	7
33	Studying thermal transport in suspended monolayer molybdenum disulfide prepared by a nano-manipulator-assisted transfer method. Nanotechnology, 2020, 31, 225702.	1.3	14
34	Anisotropic Collective Charge Excitations in Quasimetallic 2D Transitionâ€Metal Dichalcogenides. Advanced Science, 2020, 7, 1902726.	5.6	6
35	Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides. Research, 2020, 2020, 9085782.	2.8	40
36	Transitionâ€Metal Dichalcogenides: Anisotropic Collective Charge Excitations in Quasimetallic 2D Transitionâ€Metal Dichalcogenides (Adv. Sci. 10/2020). Advanced Science, 2020, 7, .	5.6	1

#	Article	lF	CITATIONS
37	Wafer-scale and deterministic patterned growth of monolayer MoS ₂ <i>via</i> vapor–liquid–solid method. Nanoscale, 2019, 11, 16122-16129.	2.8	76
38	Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin–Orbit Coupling. ACS Nano, 2019, 13, 14529-14539.	7.3	10
39	Effect of stress layer on thermal properties of SnSe2 few layers. Journal of Alloys and Compounds, 2019, 783, 226-231.	2.8	11
40	Atomic Layer Deposition of High-Quality Al ₂ O ₃ Thin Films on MoS ₂ with Water Plasma Treatment. ACS Applied Materials & Diterfaces, 2019, 11, 35438-35443.	4.0	15
41	Selective Engineering of Chalcogen Defects in MoS ₂ by Low-Energy Helium Plasma. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24404-24411.	4.0	37
42	Modulation of New Excitons in Transition Metal Dichalcogenideâ€Perovskite Oxide System. Advanced Science, 2019, 6, 1900446.	5.6	6
43	Effects Of Structural Phase Transition On Thermoelectric Performance in Lithium-Intercalated Molybdenum Disulfide (Li _{<i>x</i>} MoS ₂). ACS Applied Materials & amp; Interfaces, 2019, 11, 12184-12189.	4.0	31
44	Employing a Bifunctional Molybdate Precursor To Grow the Highly Crystalline MoS ₂ for High-Performance Field-Effect Transistors. ACS Applied Materials & Diterfaces, 2019, 11, 14239-14248.	4.0	10
45	Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nature Photonics, 2019, 13, 467-472.	15.6	236
46	Enhanced thermal conductivity of MoS2/InSe-nanoparticles/MoS2 hybrid sandwich structure. Journal of Alloys and Compounds, 2019, 777, 1145-1151.	2.8	4
47	Growth and thermal properties of various In2Se3 nanostructures prepared by single step PVD technique. Journal of Alloys and Compounds, 2019, 773, 698-705.	2.8	24
48	Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nature Materials, 2018, 17, 535-542.	13.3	286
49	Measuring the thermal conductivity and interfacial thermal resistance of suspended MoS 2 using electron beam self-heating technique. Science Bulletin, 2018, 63, 452-458.	4.3	54
50	Investigation of the Energy Band at the Molybdenum Disulfide and ZrO2 Heterojunctions. Nanoscale Research Letters, 2018, 13, 405.	3.1	4
51	Gate voltage and temperature dependent Ti-graphene junction resistance toward straightforward p-n junction formation. Journal of Applied Physics, 2018, 124, .	1.1	8
52	Probing the Physical Origin of Anisotropic Thermal Transport in Black Phosphorus Nanoribbons. Advanced Materials, 2018, 30, e1804928.	11.1	50
53	Black Phosphorus: Abnormal Near-Infrared Absorption in 2D Black Phosphorus Induced by Ag Nanoclusters Surface Functionalization (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870325.	11.1	0
54	Effects of Thymoquinone on radiation enteritis in mice. Scientific Reports, 2018, 8, 1-7.	1.6	10,654

#	Article	IF	CITATIONS
55	Perspectives on Thermoelectricity in Layered and 2D Materials. Advanced Electronic Materials, 2018, 4, 1800248.	2.6	77
56	Low-temperature study of neutral and charged excitons in the large-area monolayer WS ₂ . Japanese Journal of Applied Physics, 2018, 57, 060309.	0.8	5
57	Largeâ€Scale Transparent Molybdenum Disulfide Plasmonic Photodetector Using Split Bull Eye Structure. Advanced Optical Materials, 2018, 6, 1800461.	3 . 6	14
58	Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nature Communications, 2018, 9, 2966.	5.8	211
59	Effect of substrate angle on the growth of MoS ₂ vertical nanosheets using a one-step chemical vapor deposition. Materials Research Express, 2018, 5, 075026.	0.8	7
60	Abnormal Nearâ€Infrared Absorption in 2D Black Phosphorus Induced by Ag Nanoclusters Surface Functionalization. Advanced Materials, 2018, 30, e1801931.	11.1	43
61	Oxygen induced strong mobility modulation in few-layer black phosphorus. 2D Materials, 2017, 4, 021007.	2.0	45
62	Monolayer W $\langle i \rangle \langle sub \rangle \times \langle sub \rangle \langle i \rangle$ Mo $\langle sub \rangle 1 \hat{a}^3 \langle sub \rangle \langle i \rangle \langle sub \rangle \times \langle sub \rangle \langle i \rangle$ S $\langle sub \rangle 2 \langle sub \rangle$ Grown by Atmospheric Pressure Chemical Vapor Deposition: Bandgap Engineering and Field Effect Transistors. Advanced Functional Materials, 2017, 27, 1606469.	7.8	48
63	Thermal Conductance of the 2D MoS2/h-BN and graphene/h-BN Interfaces. Scientific Reports, 2017, 7, 43886.	1.6	79
64	Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Letters, 2017, 17, 4122-4129.	4. 5	117
65	Ultralow Thermal Conductivity of Singleâ€Crystalline Porous Silicon Nanowires. Advanced Functional Materials, 2017, 27, 1702824.	7.8	47
66	Phosphorene: Enhanced Photoresponse from Phosphorene–Phosphoreneâ€6uboxide Junction Fashioned by Focused Laser Micromachining (Adv. Mater. 21/2016). Advanced Materials, 2016, 28, 4164-4164.	11.1	4
67	Enhanced Photoresponse from Phosphorene–Phosphorene‧uboxide Junction Fashioned by Focused Laser Micromachining. Advanced Materials, 2016, 28, 4090-4096.	11.1	38
68	Black Phosphorus Based Field Effect Transistors with Simultaneously Achieved Near Ideal Subthreshold Swing and High Hole Mobility at Room Temperature. Scientific Reports, 2016, 6, 24920.	1.6	35
69	Band alignment of ZnO/multilayer MoS2 interface determined by <i>x</i> ray photoelectron spectroscopy. Applied Physics Letters, 2016, 109, .	1.5	10
70	AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor with Polarized P(VDF-TrFE) Ferroelectric Polymer Gating. Scientific Reports, 2015, 5, 14092.	1.6	14
71	Low temperature carrier transport study of monolayer MoS2 field effect transistors prepared by chemical vapor deposition under an atmospheric pressure. Journal of Applied Physics, 2015, 118, .	1.1	19
72	Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nature Communications, 2015, 6, 6485.	5.8	335

#	Article	IF	CITATION
73	A wafer-scale graphene and ferroelectric multilayer for flexible and fast-switched modulation applications. Nanoscale, 2015, 7, 14730-14737.	2.8	26
74	Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. ACS Nano, 2015, 9, 8070-8077.	7.3	204
75	Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. ACS Nano, 2015, 9, 10411-10421.	7.3	126
76	Length-dependent thermal conductivity in suspended single-layer graphene. Nature Communications, 2014, 5, 3689.	5.8	735
77	Large Thermoelectricity via Variable Range Hopping in Chemical Vapor Deposition Grown Single-Layer MoS ₂ . Nano Letters, 2014, 14, 2730-2734.	4.5	210
78	An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Research, 2013, 6, 200-207.	5.8	140
79	Graphene–Ferroelectric Hybrid Structure for Flexible Transparent Electrodes. ACS Nano, 2012, 6, 3935-3942.	7.3	167